PCE dechlorination by non-Dehalococcoides in microbial electrochemical system

Jaecheul Yu, Younghyun Park, Van Khanh Nguyen, Taeho Lee †

Department of Environmental Engineering, Pusan National University, Busan, Korea

†Corresponding author

Address: Department of Environmental Engineering, Pusan National University, Busan 609-735.

Tel: +82-51-510-2465.

Fax: +82-51-514-9574.

Email address:

Material and Methods

PCR-DGGE

Bacterial 16S rRNA genes were amplified from the extracted microbial community DNA by PCR with primers Eub 8F (5-AGA GTT TGA TCM TGG CTC AG -3) and Eub 1389R (5- ACG GGC GGT GTG TAC AAG -3). The PCR products were then used as templates for a nested PCR using primers Eub 340F-GC (5- CGC CCG CGC GGC GGC CGG GGC GGG GGC ACG GGG - GGA GRA AAG CAG GGG ATC G -3) and Eub 518R (5- WTT ACC GCG GCT GCT GG -3) to amplify the variable (V3) region of 16S rRNA. PCR amplifications were performed in a thermal cycler (MyCycler; BioRad Lab. Inc.; CA, USA). Each PCR mixture contained 2 μL of PCR products, 0.25 μL (10 pmol) of each primer, 10 μL (10 mmol) of each dNTP, 2.5 μL of 10× PCR buffer, and 0.125 μL of Taq DNA polymerase (Solgent Co. Ltd.; Deajeon, Korea), in a final volume of 50 μL. The tubes were first denatured for 9 min at 95°C, followed by 30 cycles of denaturation at 95°C for 1 min, annealing at 55°C for 2 min, and primer extension at 72°C for 2 min, followed by a final extension at 72°C for 10 min. All of the PCR products were also purified using a PCR purification kit (Solgent Co. Ltd.; Daejeon, Korea) according to the manufacturer’s instructions. DGGE was first performed at 20 V for 20 min and then at 200 V for 6 h on an 8% polyacrylamide gel that contained a linear gradient ranging from 30% to 60% of denaturant (100% denaturant constituted 7 mol/L urea and 40% formamide) using a Decode Universal Mutation Detection System (Bio-Rad; Hercules, CA, USA). After electrophoresis, the gel was stained in ethidium bromide for 30 min. The band profile was visualized using an ultraviolet transilluminator (Uvitec; Cambridge, UK) and photographed with a digital camera (Olympus 720 UZ; Olympus Optical Co. Ltd.; Japan).

Pyrosequencing

The bacterial 16S rRNA genes were amplified by PCR with primers Eub 27F (5- GAG TTT GAT CMT GGC TCA G -3) and Eub 518R (5- WTT ACC GCG GCT GCT GG -3). The PCR products were pyrosequenced using the Genome Sequencer FLX system (Roche Diagnostics Co.; Branford, CT, USA) by Macrogen Inc. (Deajeon, Korea). The obtained 16S rRNA sequences were processed by the Ribosomal Database Project’s pyrosequencing pipeline. Phylotypic identification was based on 16S rRNA sequence homology by performing a nucleotide BLAST search on the website of the National Center for Biotechnology Information.

Table S1. Phylotypes of the extracted DGGE bands of the 16s rRNA gene fragments

Band name / MV* / Biofilm/suspension / Taxonomic group / Closet 16S rRNA gene sequence / Accession
No. / Similarity
(%) / Assumed putative role / Ref
#1 / - / Suspension / Gammaproteobacteria / uncultured Acinetobacter sp. / EF593051 / 94 / EET/Dechlorination / [12, 23]
#2 / - / Biofilm / Bacteroidetes / uncultured Bacteroidetes bacterium / EU887995 / 97 / H2 production / [20]
#3 / - / Suspension / Deltaproteobacteria / uncultured delta proteobacterium / FM206230 / 98 / Dechlorination/ H2 production / unpublished
#4 / - / Biofilm / Firmicutes / Clostridium-like species / U27711 / 98 / Dechlorination/ H2 production / [11]
#5 / - / Biofilm / Betaproteobacteria / Thiobacillus sp. E4IPC-4826 / DQ133429 / 98 / EET / [4, 23]
#6 / - / Biofilm / Environmental samples / uncultured bacterium / HM149204 / 98 / EET / unpublished
#7 / - / Biofilm / Firmicutes / Clostridium bifermentans / HQ013322 / 99 / Dechlorination/ H2 production / [5]
#8 / - / Suspension / Environmental samples / bacterium DCE29 / AJ249260 / 99 / Dechlorination/ H2 production / [8, 9]
#9 / + / Biofilm / Gammaproteobacteria / Pseudomonas sp. PCP2.1 / AY131332 / 99 / EET / [13]
#10 / + / Suspension / Bacteroidetes / uncultured Dysgonomonas sp. / FJ393099 / 99 / EET / [2]
#11 / + / Suspension / Environmental samples / uncultured bacterium / DQ471352 / 98 / Dechlorination / [1]
#12 / + / Biofilm / Gammaproteobacteria / Citrobacter freundii / EU046372 / 98 / EET/ H2 production / [17, 22]
#13 / + / Suspension / Gammaproteobacteria / Pantoea agglomerans / AY335552 / 96 / Dechlorination/ H2 production / [10, 16]
#14 / + / Suspension / Bacteroidetes / uncultured bacterium / FJ393131 / 99 / EET / [2]
#15 / + / Biofilm / Firmicutes / Clostridium bifermemtans / HQ013322 / 99 / Dechlorination/ H2 production / [5]

* +: with MV and -: without MV** EET: Extracellular electron transfer

Table S2. Five most dominant bacterial 16S rRNA gene sequences in the cathode compartment of an MES

Conditions / Name / Distribution
(%) / Taxonomic group / The Closest 16S rRNA gene sequence / Accession
No. / Similarity
(%) / Assumed putative roles / Ref
M1 / EC1 / 18.5 / Gammaproteobacteria / Enterobacter sp. 2019 / JX566554 / 99 / Dechlorination/ H2 production / [10, 17]
EC2 / 13.5 / Gammaproteobacteria / Enterobacter sp. AJ2 / KJ913658 / 97 / Dechlorination/ H2 production / unpublished
EC3 / 7.9 / Gammaproteobacteria / Enterobacter cloacae strain AJ1 / KJ872526 / 99 / Dechlorination/ H2 production / unpublished
EC4 / 3.2 / Gammaproteobacteria / Enterobacter sp. NJ-64 / AM421983 / 98 / Dechlorination/ H2 production / unpublished
EC5 / 3.2 / Environmental sample / Uncultured bacterium DCE29 / AF349765 / 97 / Dechlorination/ H2 production / [8, 9]
M 3 / Suspension / AS1 / 25.7 / Gammaproteobacteria / Acinetobacter haemolyticus / AM184255 / 96 / EET/Dechlorination / [12, 23]
AS2 / 3.7 / Gammaproteobacteria / Uncultured Aeromonas sp. clone O-1 / AB745447 / 99 / EET / [6]
AS3 / 3.6 / Environmental sample / Uncultured bacterium clone / FJ393105 / 97 / EET / [2]
AS4 / 3.0 / Gammaproteobacteria / Uncultured Aeromonas sp. OTU-9-AB / JQ624317 / 99 / EET / [6]
AS5 / 2.9 / Environmental sample / Uncultured bacterium 9E / AF427913 / 100 / Dechlorination / [14]
Biofilm / AE1 / 10.5 / Alphaproteobacteria / Rhodopseudomonas palustris / AB127985 / 100 / EET/H2 Production/Dechlorination / [3, 7, 21]
AE2 / 10.1 / Alphaproteobacteria / Rhodopseudomonas palustris CS-1 / JQ863308 / 99 / EET/H2 Production/Dechlorination / unpublished
AE3 / 7.1 / Betaproteobacteria / Uncultured Azonexus sp. clone SD2 / JN860153 / 99 / Dechlorination/H2 production / [18]
AE4 / 4.9 / Betaproteobacteria / Uncultured bacterium QEDN6BE11 / CU925083 / 100 / Unknown / [15]
AE5 / 4.6 / Environmental sample / Uncultured bacterium clone / FJ393105 / 99 / EET / [2]
M4 / Suspension / BS1 / 22.4 / Gammaproteobacteria / Pseudomonas aeruginosa / KJ865913 / 98 / EET / [13]
BS2 / 20.6 / Firmicutes / Clostridium sp. 6-62 / AB596881 / 99 / H2 production/Dechlorination / [11]
BS3 / 8.7 / Gammaproteobacteria / Enterobacter sp. Ls104 / KJ730211 / 99 / Dechlorination/ H2 production / [10, 17]
BS4 / 7.0 / Firmicutes / Clostridium bifermentans strain DPH-1 / Y18787 / 100 / Dechlorination/H2 production / [5]
BS5 / 5.1 / Firmicutes / Clostridium sp. 6-62 / AB596881 / 99 / H2 production/Dechlorination / [11]
Biofilm / BE1 / 21.7 / Gammaproteobacteria / Enterobacter cloacae strain AJ1 / KJ872526 / 99 / Dechlorination/ H2 production / [10, 17]
BE2 / 11.5 / Gammaproteobacteria / Pseudomonas aeruginosa strain VSS6 / KJ528948 / 99 / EET / [13]
BE3 / 7.0 / Synergistetes / Uncultured Cloacibacillus sp. / FR693794 / 97 / EET / [19]
BE4 / 5.0 / Betaproteobacteria / Uncultured Comamonadaceae bacterium / FJ393075 / 99 / EET / [2]
BE5 / 4.5 / Gammaproteobacteria / Citrobacter freundii strain Y9 / KF781347 / 99 / EET/ H2 production / [17, 22]

Referemce

1. Baptista II, Peeva LG, Zhou NY, Leak DJ, Mantalaris A, Livingston AG (2006) Stability and performance of Xanthobacter autotrophicus GJ10 during 1,2-dichloroethane biodegradation. Appl Environ Microbiol 72:4411-4418. doi: 10.1128/AEM.02576-05.

2. Borole AP, Hamilton CY, Vishnivetskaya TA, Leak D, Andras C, Morrell-Falvey J, Keller M, Davison B (2009) Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. J Power Sources 191:520-527. doi:10.1016/j.jpowsour.2009.02.006.

3. Bose A, Gardel E, Vidoudez C, Parra E, Girguis P (2014) Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, Article number: 3391. doi:10.1038/ncomms4391.

4. Carbajosa S, Malki M, Caillard R, Lopez MF, Palomares FJ, Martín-Gago JA, Rodríguez N, Amils R, Fernández VM, De Lacey AL (2010) Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosensors and Bioelectronics 26:877-880. doi:10.1016/j.bios.2010.07.037

5. Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Journal of bioscience and bioengineering 89:489-491. doi:10.1016/S1389-1723(00)89102-1.

6. Chung K, Okabe S (2009) Characterization of electrochemical activity of a strain ISO2‐3 phylogenetically related to Aeromonas sp. isolated from a glucose‐fed microbial fuel cell. Biotechnol Bioeng 104:901-910. doi: 10.1002/bit.22453

7. Egland PG, Gibson J, Harwood CS (2001) Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 67:1396-1399. doi: 10.1128/AEM.67.3.1396-1399.2001.

8. Flynn SJ, Löffler FE, Tiedje JM (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ Sci Technol 34:1056-1061. doi: : 10.1021/ /es9908164

9. Gu AZ, Hedlund BP, Staley JT, Strand SE, Stensel HD (2004) Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis‐DCE. Environ Microbiol 6:45-54. . doi 10.1046/j.1462-2920.2003.00525.x.

10. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383-398. doi: 10.1111/j.1574-6976.1998.tb00377.x.

11. Ise K, Suto K, Inoue C (2011) Microbial diversity and changes in the distribution of dehalogenase genes during dechlorination with different concentrations of cis-DCE. Environ Sci Technol 45:5339-5345. doi: 10.1021/es104199y.

12. Prakash D, Kumar R, Jain RK, Tiwary BN (2011) Novel pathway for the degradation of 2-chloro-4-nitrobenzoic acid by Acinetobacter sp. strain RKJ12. Appl Environ Microbiol 77:6606-6613 doi: 10.1128/AEM.00685-11

13. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373-5382. doi: 10.1128/AEM.70.9.5373-5382.2004.

14. Richardson RE, Bhupathiraju VK, Song DL, Goulet TA, Alvarez-Cohen L (2002) Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques. Environ Sci Technol 36:2652-2662. doi: 10.1128/AEM.00685-11

15. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal 3:700-714. doi:10.1038/ismej.2009.2.

16. Shan H, Kurtz HD,Jr, Mykytczuk N, Trevors JT, Freedman DL (2010) Anaerobic biotransformation of high concentrations of chloroform by an enrichment culture and two bacterial isolates. Appl Environ Microbiol 76:6463-6469. doi: 10.1128/AEM.01191-10.

17. Thompson LJ, Gray VM, Kalala B, Lindsay D, Reynolds K, von Holy A (2008) Biohydrogen production by Enterobacter cloacae and Citrobacter freundii in carrier induced granules. Biotechnol Lett 30:271-274. doi: 10.1007/s10529-007-9527-y.

18. Thrash JC, Pollock J, Torok T, Coates JD (2010) Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov. Appl Microbiol Biotechnol 86:335-343. doi: 10.1007/s00253-009-2336-6.

19. Thygesen A, Marzorati M, Boon N, Thomsen AB, Verstraete W (2011) Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Appl Microbiol Biotechnol 89:855-865. doi: 10.​1007/​s00253-010-3068-3.

20. Wang H, Vuorela M, Keränen A, Lehtinen TM, Lensu A, Lehtomäki A, Rintala J (2010) Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production. FEMS Microbiol Ecol 72:496-506. doi: http://dx.doi.org/10.1111/j.1574-6941.2010.00850.x.

21. Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42:4146-4151. doi: 10.1021/es800312v.

22. Xu S, Liu H (2011) New exoelectrogen Citrobacter sp. SX‐1 isolated from a microbial fuel cell. J Appl Microbiol 111:1108-1115. doi: 10.1111/j.1365-2672.2011.05129.x.

23. Yu J, Park Y, Kim B, Lee T (2015) Power densities and microbial communities of brewery wastewater-fed microbial fuel cells according to the initial substrates. Bioprocess. Biosyst. Eng. 38:85-92. doi: 10.1007/s00449-014-1246-x.

6