Supplementary materials

Section 1 The bond lengths and bond angles

Table S1 The Selected bond lengths(Å) and bond angles (°) of complexes.

1 / 2 / 3
Cr(1)-O(1) 1.943(3) / Cr(1)-O(3) 1.931(2) / Cr(1)-O(6) 1.928(2)
Cr(1)-O(1)#1 1.943(3) / Cr(1)-O(1) 1.952(2) / Cr(1)-O(3) 1.949(2)
Cr(1)-O(3) 1.997(5) / Cr(1)-N(3) 2.047(3) / Cr(1)-O(2) 1.969(2)
Cr(1)-N(1)#1 2.119(3) / Cr(1)-N(4) 2.049(3) / Cr(1)-N(1) 2.057(3)
Cr(1)-N(1) 2.119(3) / Cr(1)-N(1) 2.053(3) / Cr(1)-N(3) 2.074(3)
Cr(1)-Cl (1) 2.285(2) / Cr(1)-N(2) 2.065(3) / Cr(1)-N(2) 2.120(3)
O(1)-Cr(1)-O(1)#1 175.1(2) / O(3)-Cr(1)-O(1) 172.89(10) / O(6)-Cr(1)-O(3) 92.97(11)
O(1)-Cr(1)-O(3) 87.57(10) / O(3)-Cr(1)-N(3) 94.84(10) / O(6)-Cr(1)-O(2) 93.21(11)
O(1)#1-Cr(1)-O(3) 87.57(10) / O(1)-Cr(1)-N(3) 80.34(10) / O(3)-Cr(1)-O(2) 162.41(10)
O(1)-Cr(1)-N(1)#1 79.87(13) / O(3)-Cr(1)-N(4) 80.88(10) / O(6)-Cr(1)-N(1) 89.17(11)
O(1)#1-Cr(1)-N(1)#1 99.97(13) / O(1)-Cr(1)-N(4) 94.06(10) / O(3)-Cr(1)-N(1) 94.69(10)
O(3)-Cr(1)-N(1)#1 88.22(9) / N(3)-Cr(1)-N(4) 92.73(11) / O(2)-Cr(1)-N(1) 101.84(10)
O(1)-Cr(1)-N(1) 99.97(13) / O(3)-Cr(1)-N(1) 89.06(9) / O(6)-Cr(1)-N(3) 84.77(11)
O(1)#1-Cr(1)-N(1) 79.87(13) / O(1)-Cr(1)-N(1) 96.46(10) / O(3)-Cr(1)-N(3) 82.23(10)
O(3)-Cr(1)-N(1) 88.22(9) / N(3)-Cr(1)-N(1) 94.19(11) / O(2)-Cr(1)-N(3) 81.96(11)
N(1)#1-Cr(1)-N(1) 176.44(19) / N(4)-Cr(1)-N(1) 168.24(10) / N(1)-Cr(1)-N(3) 173.03(11)
O(1)-Cr(1)-Cl(1) 92.43(10) / O(3)-Cr(1)-N(2) 95.03(10) / O(6)-Cr(1)-N(2) 168.47(11)
O(1)#1-Cr(1)-Cl(1) 92.43(10) / O(1)-Cr(1)-N(2) 90.31(9) / O(3)-Cr(1)-N(2) 88.52(11)
O(3)-Cr(1)-Cl(1) 180.0 / N(3)-Cr(1)-N(2) 168.71(10) / O(2)-Cr(1)-N(2) 88.71(11)
N(1)#1-Cr(1)-Cl(1) 91.78(9) / N(4)-Cr(1)-N(2) 94.24(11) / N(1)-Cr(1)-N(2) 79.31(11)
N(1)-Cr(1)-Cl(1) 91.78(9) / N(1)-Cr(1)-N(2) 80.50(10) / N(3)-Cr(1)-N(2) 106.76(12)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z-1/2

Section 2 Supplementary figure

Fig. S1The hydrogen bonds between adjacent double-layers (B) in complex 3

Section 3 The details of hydrogen bonds in the complexes

Table S2 The hydrogen bonds in the complexes

Complexes / D–H∙∙∙A / d(D–H)/Å / d(H∙∙∙A)/Å / <DHA/° / d(D∙∙∙A)/Å
1 / O3–H3∙∙∙O2 [-x+1, -y+2, -z] / 0.850 / 1.817 / 170.10 / 2.629
2 / C21–H21∙∙∙O7 / 0.930 / 2.445 / 148.5 / 3.274
C16–H16∙∙∙O9 / 0.930 / 2.536 / 168.1 / 3.451
O8–H8A∙∙∙O5[ x, y+1, z-1 ] / 0.850 / 2.192 / 153.28 / 2.976
O8–H8B∙∙∙O8[ -x+1, -y+2, -z ] / 0.850 / 2.389 / 112.89 / 2.830
O9–H9B∙∙∙O9[ -x+1, y, -z+3/2 ] / 0.850 / 2.204 / 140.05 / 2.907
O10–H10A∙∙∙O2[ -x+1, y, -z+3/2 ] / 0.850 / 2.447 / 113.87 / 2.897
3 / C9–H9∙∙∙O5 / 0.930 / 2.347 / 164.3 / 3.252
C15–H15∙∙∙O4 / 0.970 / 2.526 / 164.8 / 3.471
C17–H17B∙∙∙O10 / 0.970 / 2.234 / 161.5 / 3.169
C3–H3∙∙∙O3 / 0.930 / 2.560 / 116.3 / 3.082
C2–H2∙∙∙O3 / 0.930 / 2.574 / 115.9 / 3.093
O7–H7B∙∙∙O4[ x, y, z+1 ] / 0.850 / 2.076 / 133.43 / 2.731
O7–H7A∙∙∙O10 / 0.850 / 1.833 / 148.65 / 2.597
O9–H9B∙∙∙O10[ -x, -y+1, -z+1 ] / 0.850 / 2.228 / 144.24 / 2.960
O8–H8B∙∙∙O7[ -x, -y+1, -z+1 ] / 0.850 / 2.163 / 139.03 / 2.860
O10–H10∙∙∙O7[ -x, -y+1, -z+1 ] / 0.820 / 2.027 / 126.17 / 2.597

Section 4 The explanations of SPS

4.1The principle of SPS

Surface photovoltage (SPV) is caused by the separation of photoinduced electron–hole pairs that result in the change of charge population in space charge region (SCR). A significant amount of charge may be transferred from the surface to the bulk (or vice versa) and/or redistributed within the surface or the bulk. Since the electric potential and the charge distribution are inter–dependent through the poisson and continuity equations, the potential drop across the surface SCR, and hence the surface potential, changes. The SPV is defined as the illumination–induced change in the surface potential. It is important to note that the formation of a SPV occurs only if carrier generation that is followed by net charge redistribution. Under the built–in electric field, the minority carriers move towards the surface, and the majority carriers towards bulk. In the case of an n–type semiconductor, the built–in electric field existing across the SCR drives photo–generated holes toward the surface or interfacial region and electrons toward the interior of material or the bulk. The reverse process takes place at a p–type semiconductor, namely, the built–in electric field existing across the SCR drives photo–generated electrons toward the surface or interfacial region and holes toward the interior of material or the bulk. Figure S2shows the effects of band–to–band transitions on the SPV responses of semiconductors. The transfer and separation processes of the charge carriers result in the redistribution of surface charges under illumination, which makes the net surface charges (QSS) and the surface band bending decrease, thus the SPV response (SPS) is generated [a].

Fig. S2 Plots showing the effects of band–to–band transitions on the surface photovoltage responses of

semiconductor. (Vs: the surface barrier before illumination; V s′: the surface barrier after illumination.)

[a] B. Kang,Y.Yang, L. Wang, Y. Qiu. DISPLAYS25, 57 (2004)

4.2 The apparatus of SPS

Fig. S3 The apparatus of SPS [b]

1 Light source (Xenon lamp); 2 Monochromator; 3 Light chopper; 4 Lens; 5 Surface photovoltage cell;

6 External electric field; 7 A lock-in amplifier; 8 Electrical source; 9 Computer; 10 Printer

[b] L. Kronik,Y. Shapira.Surf. Interface. Anal. 31, 954 (2001)

4.3 The structure of surface photovoltage cell

Fig. S4 Construction of surface photovoltage cell [c]

[c] S. Datta, S. Ghosh.Rev. Sci. Instrum. 72, 171 (2001)

4.4 The application of SPS

Surface photovoltage spectroscopy (SPS) is very sensitive method to investigate the photophysical process of the excited states generated by absorption of the aggregate in the solid state. They have been employed in the studies of charge transfer in photo–stimulated surface interactions, dye sensitization processes and photo–catalysis [d]. SPS is an effective method for quickly evaluating the photocatalytic activity of nanosized semiconductor materials. SPS are mainly discussed together with some fundamental aspects like the electric properties of semiconductor surfaces and the principle of electric field effect. In particular, Jing emphasized the applications of SPS to nano–sized semiconductors such as ZnO and TiO2 in heterogeneous photocatalysis, which involve mainly evaluating the photocatalytic activity by analyzing semiconductor surface properties such as the separation efficiency of photoinduced carriers under illumination by the SPS measurement [e].

[d] T.F. Xie, D.J. Wang, S.M. Chen, T.J.Li.Thin Solid Films327–329, 415 (1998)

[e] L.Q. Jing, X.J. Sun, J. Shang, W.M. Cai,Z.L. Xu, Y.G. Du, H.G. Fu.Sol.Energy Mater. Sol. Cells79, 133(2003)