Press Release – 8th April 2016

Rolling bearing research project aims to cut fuel and energy consumption in vehicles and machines

Precision bearing manufacturer Schaeffler and the Friedrich-Alexander University of Erlangen-Nuremberg (FAU) have developed a new rolling bearing spin test stand as part of a collaborative research project. The results of the research project will be used to optimise current rolling bearing technology with the aim of cutting fuel and energy consumption in vehicles and machines.

On the test stand, bearings are subjected to 3,000 times gravitational acceleration and tested under the resulting high loads. To date, very little research has been conducted into the friction behaviour of rolling bearings under high centrifugal forces such as those generated on the rolling bearing spin test stand.

A heavyweight among test stands

The test stand, which is located in its own 22 square metre test bunker and weighs 16 tonnes, took three years to design and build with 900 technical drawings, 1600 screws and one kilometre of cable. “The rolling bearing spin test stand has been one of the largest projects ever carried out at the Chair and it is a perfect example of the excellent cooperation between industry and universities in the field of fundamental rolling bearing research,” emphasised Prof. Dr.-Ing. Sandro Wartzack, head of the Chair for Engineering Design.

The bearings rotate twice during testing. Thanks to an open planetary gear, each bearing rotates around its own axis while all of the bearings together rotate around a central axis. The test stand will enable investigations to be carried out concerning which factors such as temperature, coatings and geometric details, actually influence the bearings under extreme loads.

Improved simulation tools

In conjunction with the FAU, Schaeffler also improved and further developed the software required for the simulation process, which enables the simulation of the behaviour of the rolling bearings even before a prototype is built by allowing optimisations to be made to the computer model. “With this test stand, we can now gain a better understanding of the phenomena associated with rolling bearings in the centrifugal force field. In this context, it is important for us to refine our simulation tools for rolling bearings based on the test results. This will help us to transfer the findings into application-oriented conditions and further improve our product development,” stated Oliver Graf-Goller, Bearings & Components Development and project manager at Schaeffler.

The last round of tests and adjustments are now being carried out. The first measurements are planned for October 2016 and will therefore improve simulations and ensure that new bearing prototypes can be tested more quickly.

For more information, please contact Schaeffler UK’s Communications & Marketing Department on

ENDS [425 words]

Note to editors:

The Schaeffler Group is a leading global integrated automotive and industrial supplier. The company stands for the highest quality, outstanding technology, and strong innovative ability. The Schaeffler Group makes a key contribution to "mobility for tomorrow" with high-precision components and systems in engine, transmission, and chassis applications as well as rolling and plain bearing solutions for a large number of industrial applications. The technology company generated sales of approximately EUR 13.2 billion in 2015. With around 84,000 employees, Schaeffler is one of the world’s largest family companies and, with approximately 170 locations in more than 50 countries, has a worldwide network of manufacturing locations, research and development facilities, and sales companies.

To download a high resolution image for this article, please go to the “Press Area” at www.silverbulletpr.co.uk . Alternatively, you can request an image by contacting:


Dean Palmer

Director

SilverBullet PR Ltd

Tel: 01780 753 000

Mobile: 07703 023 771

Email:

www.silverbulletpr.co.uk

Schaeffler (UK) Ltd,

Forge Lane, Minworth,
Sutton Coldfield, West Midlands B76 1AP.

Tel: 0121 313 5870 Fax: 0121 351 7686
Email:
www.schaeffler.co.uk

2