ELECTRICMICROFIELDDISTRIBUTION INNEUTRAL-IONPLASMAS
pA7
Thouria CHOHRA and Mohammed Tayeb MEFTAH
LaboratoiredeDéveloppementdesEnergiesNouvelleset RenouvelablesdanslesZonesArideset Sahariennes(LENREZA),FacultédesScienceset TechnologiesetdesSciencesdelaMatière, UniversitéKasdiMerbah–Ouargla,30000Ouargla,Algeria
E-mail:
ABSTRACT: The knowledge of the electricmicrofield distribution in multicomponent plasmas isa necessary conditiontothe solution ofseveral problems. Inparticular, the calculation ofthe spectral line shapes for anion, taken as radiator in a plasma consisting of neutrals and ions is one of these problems requiring such a distribution.In thiswork, we areinterestedintheelectric microfielddistributioninatwo-component plasma.To reachthisgoal,we useda usefulmethodbasedon”clusterexpansion”, widelyknowninstatisticalmechanics. Hereweonlyusethefirstterm oftheBaranger-Mozer formalism (theindependent particleapproximation).The system wedealwithconsistsofionsandneutralsimmersedinauniform neutralizingbackground. Thetotal systemisassumedtobeinthermalequilibrium andneutralatallpoints.Themaininteractions usedareion-ion and ion-neutralinteractions.
KEYWORDS: electricmicrofielddistribution, multicomponentplasma, clusterexpansion
1. Introduction
The knowledge of theprobabilitydistribution function for electric field in a multicomponentionized plasmasisaprerequisitetothesolutionof anumberof problems,in particularthatofthecalculationofthebroadeningofspectrallinesinplasmas[1,6].In relationto this problem, various theories of the electricmicrofielddistributions have been formulated.Theprimaryaim oftheseeffortshasbeentoincludeion-ioncorrelationswith various orders and thus to improve the original work done by Holtsmark [5].
2. Formalism
WeconsidertheelectricmicrofielddistributionW(E)[1],definedastheprobability
densityoffindingafield Eequaltoεatthecharge
Z1e,locatedat
r1,intwo-component
ioniccoldplasmas(TCICP)whereionsofspeciesσ=a,bcarryacharge
Zσeandneutralsof
species
σ=c,d.Here,eisthemagnitudeoftheelementarychargeandallthe
Zσ ’sare
positive.As usual,weassumethattheelectronscreening isdescribedbyDebye-Hückel’s formula. This can be justifiedonly for plasma inwhichtheelectron-electronand electron-ion couplingsarebothweakandtheplasmamaybedescribedbyclassicalmechanics.The system,whichalsoincludesauniformneutralizingbackground,isassumedtobedescribedby classical equilibriumstatistical mechanics with temperature Tand number densitiesnσ ,
N
nσ = σ Ω
and
N=∑Nσ
σ
=Na +Nb+Nc +Nd
ne =Zana +Zbnb
We introduce the composition parameter,
p= Nb ,
Na +Nb
p'=Nb
N
where
Nσis the number ofparticles of speciesσ=a,b,c,dand Ωisthe total.
The quantityλDis the electron Debye screeninglength[2]
2 KBT
λD = 2
4πnee
The dimensionless classical plasma parameter thus reads
⎛
Λ=⎜1+∑
1/2
nσ Z2⎞
e2
=0.33v3
⎜ σ=a;bne ⎟
KBTλD
r0
ne (cm )
= =0.0898
1/6 −3
v λ T1/2(K)
Theelectroncomponentwith 0sothat(4/15)(2π)3/2nr3 =1.TheHoltsmarkunitoffield
strength thus becomes
With the reduced unitβ=E/E0.
E0(KV/cm)= 2
0
The microfield distribution will be discussed under the usual isotropic form(u=kE0)
H(β)= 2β∫uF(u)sin(βu)du
(1)
in terms of its Fourier transform
π 0
F(u).
ThemathematicalquantityofinterestisobviouslyF(u).ItistheFouriertransformofthe probabilityW(E)for finding an electric field,
i n
E=E +E
i
(2)
Theelectricfieldatchargedpoint(ions)
n
E are given by,
E andtheelectricfieldatneutraledpoint(neutral)
i Nσ
E =−∑∑zσef
σ =a,bi=1
i Nσ
(r −r )r1 −ri
r1−ri
( )r1 −ri
(3)
E =−∑∑ασz1ehr1−ri
= =
r1−r
Where
σ c,d i 1
1⎡ r ⎤
i
⎛ r ⎞
f(r)=
2 ⎢1+
⎥exp⎜− ⎟
r ⎣ λD⎦
1⎡ r ⎛
⎝ λD ⎠
r ⎞ ⎤ ⎛ r ⎞
(4)
h(r)=
⎢1+
r ⎢⎣ λD
+⎜1+
⎝
⎟
λD ⎠
⎥exp⎜−2
⎥⎦ ⎝
⎟
λD ⎠
andασ
ispolarizabilitycoefficientoftheneutralofspeciesσ (α≈R3, 3
istherayonof
the neutral). One then gets
F(k)=∫exp(ik.E)W(E)dE
=∫exp(ik.E)P(r1,r2,...,rN)dr1dr2...drN
(5)
where
P(r1,r2,...,rN)is thejointprobability for finding Nparticles located atr1,r2,...,rN.
Upon introducing theauxiliary quantitiesϕ through
exp⎛
. a⎞
1 ⎡exp⎛
. a⎞ 1⎤ a
⎜ikEi ⎟= +
⎜ikEi ⎟−
=1+ϕi
⎝
exp⎛
⎠
. b⎞
⎝
1 ⎡exp⎛
⎠
. b⎞ 1⎤ b
⎜ikEj⎟= +
⎜ikEj⎟−
=1+ϕj
⎝
exp⎛
⎠
. c⎞
⎝
1 ⎡exp⎛
⎠
. c⎞ 1⎤ c
(6)
⎜ikEk⎟= +
⎜ikEk⎟−
=1+ϕk
⎝
exp⎛
⎠
. d⎞
⎝
1 ⎡exp⎛
⎠
. d⎞ 1⎤ d
Then
F(k)becomes
⎜ikEl ⎟= +
⎝ ⎠
⎜ikEl ⎟−
⎝ ⎠
=1+ϕl
F(k)=1+∑P(ri)ϕi dri +∑
∫P(rj)ϕjdrj +∑1
∫P(rk)ϕkdrk +∑1
'''
∫P(rl)ϕl drl
+∑2∫P(ri,ri' )ϕi ϕi'dridri'+∑2
∫P(rj,rj' )ϕjϕj'drjdrj'+∑2
∫P(rk,rk' )ϕkϕk'drkdrk'+(8)
a a ' b b
'' c c
∑2 ∫P(rl,rl' )ϕl ϕl dridri'+∑1∑1
∫P(ri,rj)ϕi ϕjdridrj +...
''' d d
'
' a b
Where
∑(∑
' )denotesasumonionsa(b),while
∑'(∑
'' )isasumonneutralsc(d)and
1 1 1 1
∑(∑' )
isthesumonaa(bb)pairs,andsoon.Acrucialstepinthisformalismisthe
introduction of the cluster expansions(σ,σ' =a,b,c,d)
Ω P (ri,...,ri
)=∏g1 (ri)+∑
g2 (ri,ri' )∏g1 (ri'')+...
M σ M σ σ σ
M 2
i i
ΩMPσσ'(ri,...,riM,rj,...,rjM)=
gσ(ri)
gσ'(rj)+
gσσ'(ri,rj)
gσ(ri' )
gσ'(rj' )+...
M ∏1 ∏1
i j
∑2 2
∏1 ∏1
i' j'
WhereMrefers to particleslocated atri,...,riM.
Formostcasesofpracticalinterest[2],weshallrestrictourselvestoweaklycouplessystems
(Λ≤ 1). Eq.(25) may then stop at the order Λwith
F(u)≈exp[n ha(u)+nhb(u)+nhc(u)+n
hd(u)]
(9)
And
a 1 b 1
c 1 d 1
h1 (u)=∫g1 (r1)ϕ1 dr1
σ=a,b,c,d
(10)
σ σ σ
Where
r1 denoteslocationofparticle
σ=a,b,c,dandga,
gb,
c and
gdarethe pairs
correlations functions. Making use of spherical harmonics expansion
ϕi =∑i[4π(2l+1)]
[jl(Zi
)−δl0]Yl0(θi,ωi)
σ=a,b,c,d
(11)
σ l 1/2 σ
Where
jl(Z)
l
is a spherical Bessel function, the
h1’s are expressed as
(Zi
=kEi ,
Xi =ri/λD)
nσh1
=−u
φ1 (a)
σ 3/2 σ
φσ a
= 15 nσ 1
−j Zσ
gσ X
X2dX
(12)
1 ( )
2(2π)1/2 n
3 ∫[1
0
0( 1
)]1 (
1) 1 1
Wheretheargument
a=u1/2visnottobeconfusedwiththeupperindexlabelingtheheavy
ion component. The central quantity F(u) is then well approximated by
F(u)≈exp[−u3/2(φa(a)+φb(a)+φc(a)+φd(a))]
(13)
1 1 1 1
Itcanbecomputedforanymixturethoughtheφ’sandtakingintoaccountionsandneutrals
screened by electrons with (σ=a,b,c,d)
σ Z
1 2 1
1
]exp(−X1)
σ=a,b
(14)
2 3
σ = 2αZ1av [1+X
1
+[1+X1
]2]exp(−2X)
σ=c,d
References
[1] B. Held and C. Deutsch, Phys. Rev. A 24, 540 (1981)
[2] B. Held, C. Deutsch, and M. M. Combert, Phys. Rev. A29, 880 (1984) [3] M. Baranger and B. Mozer, Phys .Rev.115, 521(1959)
[4] M. Baranger and B. Mozer, Phys .Rev. 118, 626 (1960) [5] J. Holtsmark, Ann. Physik58, 577 (1919)
[6] C. F. Hooper, Phys. Rev. A 149, 77 (1966)