CHAPTER 18
TIME SERIES AND FORECASTING
1. for 2003, t = 8
= 52.4 + 30.6t = 52.4 + 30.6(8) = 297.2
3.
= 1.30 + 0.90t = 1.30 + 0.90(7) = 7.6(tonnes)
5. (a)YearCode (t)Sales (Y)ln (Y)t*ln(Y)t2
199611.10.095310.095311
199721.50.4054650.810934
1998320.6931472.0794429
199942.40.8754693.50187516
200053.11.1314025.65701125
Totals1510.13.20079312.1445755
Note: “ln” here stands for natural logarithms (pronounced as lan of..).
ln (b) = (12.72285) / (50) = 0.2545
ln (a) = - 0.1235
OR .
The logarithmic equation therefore is:
Note: gives a = 0.884; b = 1.289
And, hence the equation in exponential form as;
(b)The average percentage growth rate is found as: (b-1)*100 = (1.289-1)*100 = 28.9%.
(c) Sales for the year 2003 are found as sales for t = 8
For t = 8: = - 0.1235 + 0.2545 (8) = 1.9125. Since, , = 6.769.
Minitab output for parts a, b and c is given below:
Trend Analysis (Exponential)
Data Sales
Length 5.00000
NMissing 0
Fitted Trend Equation
Yt = 0.884708*(1.28945**t)
Accuracy Measures
MAPE: 2.88916
MAD: 0.0545174
MSD: 0.00362965
Row Period FORE3
1 6 4.06663
2 7 5.24373
3 8 6.76155
(d)Quadratic (parabola) trend provided a better fit.
This can be judged in two ways. (1) Graphically the fitted points are closer to the actual points.
(2) Accuracy measures such as MAPE, MAD or MSD that measure the errors, on average, between the actual and the fitted values. A lower value of these measures indicates a better fit. All these measures have smaller values for quadratic trend compared to the exponential trend as shown below by the Minitab output.
Trend Analysis (Exponential with accurate data)
Data Sales
Length 5.00000
NMissing 0
Fitted Trend Equation
Yt = 1.03385*(1.19283**t)
Accuracy Measures
MAPE: 11.5974
MAD: 0.222229
MSD: 0.0660617
Trend Analysis (Quadratic with accurate data)
Data Sales
Length 5.00000
NMissing 0
Fitted Trend Equation
Yt = 0.2 + 0.932857*t - 0.107143*t**2
Accuracy Measures
MAPE: 5.86221
MAD: 0.102857
MSD: 0.0132571
7.QuarterSeasonal
Indexes
10.690
21.666
31.168
40.476
MegaStat Output
Centered Moving Average and DeseasonalizationCentered
Moving / Ratio to / Seasonal / Absences
t / Year / Quarter / Absences / Average / CMA / Indexes / Deseasonalized
1 / 1 / 1 / 4 / 0.690 / 5.8
2 / 1 / 2 / 10 / 1.666 / 6.0
3 / 1 / 3 / 7 / 6.125 / 1.143 / 1.168 / 6.0
4 / 1 / 4 / 3 / 6.500 / 0.462 / 0.476 / 6.3
5 / 2 / 1 / 5 / 7.000 / 0.714 / 0.690 / 7.2
6 / 2 / 2 / 12 / 7.375 / 1.627 / 1.666 / 7.2
7 / 2 / 3 / 9 / 7.625 / 1.180 / 1.168 / 7.7
8 / 2 / 4 / 4 / 8.250 / 0.485 / 0.476 / 8.4
9 / 3 / 1 / 6 / 9.125 / 0.658 / 0.690 / 8.7
10 / 3 / 2 / 16 / 9.500 / 1.684 / 1.666 / 9.6
11 / 3 / 3 / 12 / 1.168 / 10.3
12 / 3 / 4 / 4 / 0.476 / 8.4
Calculation of Seasonal Indexes
1 / 2 / 3 / 4
1 / 1.143 / 0.462
2 / 0.714 / 1.627 / 1.180 / 0.485
3 / 0.658 / 1.684
mean: / 0.686 / 1.656 / 1.162 / 0.473 / 3.976
adjusted: / 0.690 / 1.666 / 1.168 / 0.476 / 4.000
9.estimated pairsQuarterly forecast
t(millions)Seasonal index(%)(millions)
2140.05110.044.055
2241.80120.050.160
2343.5580.034.840
2445.3090.040.770
11.= 5.5528 + 0.3787 (t). The following are the sales estimates.
EstimateIndexForecast
10.0970.6906.967
10.4761.66617.452
10.8541.16812.678
11.2330.4765.347
Linear Trend on Deseasonalized Absences: MegaStat Output
Regression Analysis0.855 / r²
0.925 / r
0.590 / std. error of estimate
12 / observations
1 / predictor variable
Desea-Abs / dependent variable
confidence interval
variables / coefficients / std. error / t (df=10) / p-value / 95% lower / 95% upper
intercept / a = / 5.5528
t / b = / 0.37867852 / 0.04937152 / 7.67 / 1.70E-05 / 0.26867190 / 0.48868515
ANOVA table
Source / SS / df / MS / F / p-value
Regression / 20.5058 / 1 / 20.5058 / 58.83 / 1.70E-05
Residual / 3.4857 / 10 / 0.3486
Total / 23.9915 / 11
Predicted values for: Desea-Abs
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
12 / 10.09697 / 9.28734 / 10.90659 / 8.55230 / 11.64164
13 / 10.47565 / 9.56740 / 11.38390 / 8.87708 / 12.07422
14 / 10.85433 / 9.84510 / 11.86355 / 9.19630 / 12.51235
15 / 11.23300 / 10.12108 / 12.34492 / 9.51054 / 12.95547
13.a.A decline, as shown by the linear trend.
b.Least square is preferable for estimating long-term trend. Least square method irons out all fluctuations including seasonal, cyclical and irregular. However, since the least squares is influenced by unusual observations, a better method to estimate long term trend would consist of using least square method on the deseasonalized series obtained by an application of the moving average method on the raw data.
c.11200, approximately.
15.a.
b.= 1.00455 + 0.04409t, using t = 1 for 1990
c.for 1993, = 1.18091, and for 1998 = 1.40136
d.for 2005, = 1.70999
e.Each asset, on average, turned over 0.044 times
17.a.
b.= 49.140 – 2.9829t
c.for 1997, = 40.1913 and for 1999, = 34.2255
d.for 2003 = 22.2939
e.The number of employees decreases, on average, at a rate of 2983 per year.
19.a.
b.For t = 4: = 2.8264;
=16.8846
For t = 9: = 4.1749
=65.033
c. 29.92%, which is the Inv (ln) of 0.2617 minus 1 (in percent form)
d.for 2002, t = 12 and = 4.96
= 142.59
Computer output based on MegaStat (Excel) is given below. For manual calculations, see question 5.
MegaStat Output
Regression Analysis1.000 / r²
1.000 / r
0.009 / std. error of estimate
11 / observations
1 / predictor variable
ln(Sales) / dependent variable
confidence interval
variables / coefficients / std. error / t (df=9) / p-value / 95% lower / 95% upper
intercept / a = / 1.8196
t / b = / 0.2617 / 0.00090 / 290.41 / 3.46E-19 / 0.2597 / 0.2638
coefficients in terms of the model: abx
6.169 / = a, beginning value
1.299 / = b, growth factor
29.92% / average rate of change
ANOVA table
Source / SS / df / MS / F / p-value
Regression / 7.5354 / 1 / 7.5354 / 84340.67 / 3.46E-19
Residual / 0.0008 / 9 / 0.0001
Total / 7.5362 / 10
Predicted values for: ln(Sales)
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
1 / 2.08131 / 2.06925 / 2.09337 / 2.05676 / 2.10586
2 / 2.34304 / 2.33264 / 2.35343 / 2.31926 / 2.36681
3 / 2.60477 / 2.59589 / 2.61366 / 2.58162 / 2.62793
4 / 2.86650 / 2.85888 / 2.87413 / 2.84380 / 2.88921
5 / 3.12824 / 3.12148 / 3.13500 / 3.10581 / 3.15066
6 / 3.38997 / 3.38352 / 3.39642 / 3.36764 / 3.41230
7 / 3.65170 / 3.64494 / 3.65846 / 3.62928 / 3.67413
8 / 3.91343 / 3.90581 / 3.92106 / 3.89073 / 3.93614
9 / 4.17517 / 4.16628 / 4.18405 / 4.15201 / 4.19832
10 / 4.43690 / 4.42650 / 4.44730 / 4.41312 / 4.46068
11 / 4.69863 / 4.68657 / 4.71069 / 4.67408 / 4.72318
12 / 4.96036 / 4.94654 / 4.97419 / 4.93490 / 4.98583
Predicted values for: Sales
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
1 / 8.01 / 7.92 / 8.11 / 7.82 / 8.21
2 / 10.41 / 10.31 / 10.52 / 10.17 / 10.66
3 / 13.53 / 13.41 / 13.65 / 13.22 / 13.85
4 / 17.58 / 17.44 / 17.71 / 17.18 / 17.98
5 / 22.83 / 22.68 / 22.99 / 22.33 / 23.35
6 / 29.67 / 29.47 / 29.86 / 29.01 / 30.34
7 / 38.54 / 38.28 / 38.80 / 37.69 / 39.41
8 / 50.07 / 49.69 / 50.45 / 48.95 / 51.22
9 / 65.05 / 64.48 / 65.63 / 63.56 / 66.57
10 / 84.51 / 83.64 / 85.40 / 82.53 / 86.55
11 / 109.80 / 108.48 / 111.13 / 107.13 / 112.53
12 / 142.65 / 140.69 / 144.63 / 139.06 / 146.32
Data:
t / ln(Sales) / Sales
1 / 2.07944 / 8.0
2 / 2.34181 / 10.4
3 / 2.60269 / 13.5
4 / 2.86790 / 17.6
5 / 3.12676 / 22.8
6 / 3.37759 / 29.3
7 / 3.67377 / 39.4
8 / 3.92197 / 50.5
9 / 4.17439 / 65.0
10 / 4.43201 / 84.1
11 / 4.69135 / 109.0
21.a.
b.Linear Trend:
Logarithmic Trend:
Logarithmic trend is more accurate.
Accuracy measures are given by Minitab in terms of MAPE (mean absolute percentage error), MAD (mean absolute deviation) and MSD (mean squared deviation). Lower the values of these measures, better the fit. They are all lower for logarithmic trend compared to linear trend. MegaStat gives R2. However, the values of R2 for two equations are not comparable since the dependent variable are expressed in different units.
c.For1993: t = 4:
Linear Trend: = 4164.6
Logarithmic Trend: = 8.3096
= 4062.69
For1998: t = 9:
Linear Trend: = 6901.73
Logarithmic Trend: = 8.8031
= 6654.84
d.For 2003, t = 14
Linear Trend: = 9638.18
Logarithmic Trend: = 9.2966
= 10900.89
e. Based on the Logarithmic trend: 10.37%, which is the Inv (ln) of 0.0987 minus 1 (in percent form)
Note: Answers may differ from computer output due to rounding.
MegaStat (Excel)
Regression Analysis / (LINEAR)0.894 / r²
0.946 / r
711.281 / std. error of estimate
12 / observations
1 / predictor variable
TSE / dependent variable
confidence interval
variables / coefficients / std. error / t (df=10) / p-value / 95% lower / 95% upper
intercept / a = / 1,976.1165
t / b = / 547.292203 / 59.480278 / 9.20 / 3.39E-06 / 414.761861 / 679.822545
ANOVA table
Source / SS / df / MS / F / p-value
Regression / ########## / 1 / ########## / 84.66 / 3.39E-06
Residual / ########## / 10 / ##########
Total / ########## / 11
Predicted values for: TSE
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
1 / 2,523.409 / 1,662.811 / 3,384.006 / 719.989 / #######
2 / 3,070.701 / 2,319.046 / 3,822.356 / 1,316.655 / #######
3 / 3,617.993 / 2,966.479 / 4,269.507 / 1,904.469 / #######
4 / 4,165.285 / 3,600.410 / 4,730.161 / 2,482.794 / #######
5 / 4,712.578 / 4,213.751 / 5,211.404 / 3,051.096 / #######
6 / 5,259.870 / 4,797.594 / 5,722.145 / 3,608.993 / #######
7 / 5,807.162 / 5,344.886 / 6,269.438 / 4,156.286 / #######
8 / 6,354.454 / 5,855.628 / 6,853.280 / 4,692.973 / #######
9 / 6,901.746 / 6,336.871 / 7,466.622 / 5,219.255 / #######
10 / 7,449.039 / 6,797.525 / 8,100.552 / 5,735.515 / #######
11 / 7,996.331 / 7,244.676 / 8,747.985 / 6,242.284 / #######
12 / 8,543.623 / 7,683.026 / 9,404.220 / 6,740.204 / #######
13 / 9,090.915 / 8,115.518 / 10,066.312 / 7,229.976 / #######
14 / 9,638.207 / 8,543.996 / 10,732.419 / 7,712.333 / #######
Data:
t / TSE
1 / 3,421.10
2 / 3,469.48
3 / 3,402.92
4 / 3,904.22
5 / 4,284.06
6 / 4,433.88
7 / 5,268.01
8 / 6,458.20
9 / 6,757.27
10 / 7,059.11
11 / 9,607.74
12 / 8,336.20
Regression Analysis / (LOGARITHMIC)
0.945 / r²
0.972 / r
0.090 / std. error of estimate
12 / observations
1 / predictor variable
ln(TSE) / dependent variable
confidence interval
variables / coefficients / std. error / t (df=10) / p-value / 95% lower / 95% upper
intercept / a = / 7.9148
t / b = / 0.0987 / 0.00751 / 13.14 / 1.24E-07 / 0.0819 / 0.1154
coefficients in terms of the model: abx
2737.376 / = a, beginning value
1.104 / = b, growth factor
10.37% / average rate of change
ANOVA table
Source / SS / df / MS / F / p-value
Regression / 1.3921 / 1 / 1.3921 / 172.66 / 1.24E-07
Residual / 0.0806 / 10 / 0.0081
Total / 1.4727 / 11
Predicted values for: ln(TSE)
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
1 / 8.01342 / 7.90478 / 8.12206 / 7.78576 / 8.24108
2 / 8.11209 / 8.01720 / 8.20698 / 7.89066 / 8.33352
3 / 8.21075 / 8.12851 / 8.29300 / 7.99444 / 8.42707
4 / 8.30942 / 8.23811 / 8.38073 / 8.09702 / 8.52182
5 / 8.40809 / 8.34511 / 8.47106 / 8.19834 / 8.61783
6 / 8.50675 / 8.44839 / 8.56511 / 8.29835 / 8.71516
7 / 8.60542 / 8.54706 / 8.66377 / 8.39701 / 8.81382
8 / 8.70408 / 8.64111 / 8.76706 / 8.49434 / 8.91383
9 / 8.80275 / 8.73144 / 8.87406 / 8.59035 / 9.01515
10 / 8.90142 / 8.81917 / 8.98366 / 8.68510 / 9.11773
11 / 9.00008 / 8.90519 / 9.09497 / 8.77865 / 9.22151
12 / 9.09875 / 8.99011 / 9.20739 / 8.87109 / 9.32641
13 / 9.19741 / 9.07428 / 9.32055 / 8.96249 / 9.43234
14 / 9.29608 / 9.15795 / 9.43421 / 9.05296 / 9.53920
Predicted values for: TSE
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
1 / 3021.24 / 2710.21 / 3367.96 / 2406.09 / 3793.65
2 / 3334.53 / 3032.67 / 3666.44 / 2672.20 / 4161.02
3 / 3680.31 / 3389.73 / 3995.80 / 2964.43 / 4569.08
4 / 4061.95 / 3782.39 / 4362.19 / 3284.68 / 5023.16
5 / 4483.17 / 4209.56 / 4774.56 / 3634.92 / 5529.37
6 / 4948.06 / 4667.57 / 5245.41 / 4017.23 / 6094.59
7 / 5461.17 / 5151.59 / 5789.35 / 4433.80 / 6726.58
8 / 6027.48 / 5659.62 / 6419.24 / 4887.03 / 7434.06
9 / 6652.51 / 6194.65 / 7144.22 / 5379.52 / 8226.75
10 / 7342.36 / 6762.65 / 7971.77 / 5914.15 / 9115.48
11 / 8103.75 / 7370.16 / 8910.36 / 6494.12 / 10112.33
12 / 8944.09 / 8023.32 / 9970.53 / 7123.02 / 11230.74
13 / 9871.57 / 8727.91 / 11165.09 / 7804.78 / 12485.67
14 / 10895.23 / 9489.57 / 12509.11 / 8543.79 / 13893.84
Data:
t / ln(TSE) / TSE
1 / 8.137717 / 3,421.10
2 / 8.151760 / 3,469.48
3 / 8.132389 / 3,402.92
4 / 8.269813 / 3,904.22
5 / 8.362656 / 4,284.06
6 / 8.397030 / 4,433.88
7 / 8.569408 / 5,268.01
8 / 8.773106 / 6,458.20
9 / 8.818374 / 6,757.27
10 / 8.862074 / 7,059.11
11 / 9.170324 / 9,607.74
12 / 9.028363 / 8,336.20
Minitab Output
Trend Analysis (Linear)
Data TSE
Length 12.0000
NMissing 0
Fitted Trend Equation
Yt = 1976.12 + 547.292*t
Accuracy Measures
MAPE: 9.84461
MAD: 501.938
MSD: 421600
Row Period FORE1
1 13 9090.92
2 14 9638.21
Trend Analysis (Exponential/Logarithmic)
Data TSE
Length 12.0000
NMissing 0
Fitted Trend Equation
Yt = 2737.38*(1.10370**t)
Accuracy Measures
MAPE: 6.90491
MAD: 400.584
MSD: 294126
Row Period FORE2
1 13 9871.6
2 14 10895.2
23.a.July 87.5, August 92.9, September 99.3, October 109.1 (all in %)
b.MonthTotalMeanSeasonal
July348.987.22586.777
Aug.368.192.02591.552
Sept.395.098.75098.242
Oct.420.4105.100104.560
Nov.496.2124.050123.412
Dec.572.3143.075142.340
Jan.333.583.37582.946
Feb.297.574.37573.993
March347.386.82586.379
April481.3120.325119.707
May396.299.05098.541
June368.192.02591.552
1206.200
Correction = 1200/1206.2 = 0.99486
c.April, November, and December are periods of high sales, while February is low.
25.a.Seasonal Index by Quarter
Average SISeasonal
QuarterComponentIndex
10.50140.5027
21.09091.0936
31.77091.7753
40.63540.6370
b.The production is the largest in the third quarter. It is 77.5% above the average quarter. The second quarter is also above average. The first and fourth quarters are well below average, with the first quarter at about 50% of a typical quarter.
27.a. Seasonal Index by Quarter
Average SISeasonal
QuarterComponentIndex
10.55490.5577
20.82540.8296
31.51021.5178
41.09731.1029
b.= 7.667 + 0.0023t
c.PeriodProductionIndexForecast
217.71530.55774.3028
227.71760.82966.4025
237.71991.517811.7173
247.72221.10298.5168
29. Seasonal Index by Quarter
Average SISeasonal
QuarterComponentIndex
11.19621.2053
21.01351.0212
30.62530.6301
41.13711.1457
The regression equation is: = 43.611 + 7.21153t
PeriodVisitorsIndexForecast
29252.861.2053304.77
30260.071.0212265.58
31267.290.6301168.42
32274.501.1457314.50
In 1997 there were a total of 928 visitors. A ten percent increase in 1998 means there will be 1021 visitors. The quarterly estimates are 1021/4 = 255.25 visitors per quarter.
PeriodVisitorsIndexForecast
Winter255.251.2053307.65
Spring255.251.0212260.66
Summer255.250.6301160.83
Fall255.251.1457292.44
The regression approach is probably superior because the trend is considered.
31.a. Q1Q2Q3Q4
86.4104.7101.6107.4
b. Sales are higher in quarter 2 and 4 and lower in quarters 1 and 3.
c. Estimated Sales on deseasonalized data: = 53.252.7+ 843.11 (t)
d. tForecast
21 70,958.05024
22 71,801.16235
23 72,644.27445
24 73,487.38656
The Excel (MegaStat) out put is given below.
Centered Moving Average and DeseasonalizationCentered
Moving / Ratio to / Seasonal / Sales($M)
t / Year / Quarter / Sales($M) / Average / CMA / Indexes / Deseasonalized
1 / 1996 / 1 / 47,287 / 0.864 / 54,743.0
2 / 1996 / 2 / 57,047 / 1.047 / 54,486.0
3 / 1996 / 3 / 55,731 / 55520.250 / 1.004 / 1.016 / 54,871.4
4 / 1996 / 4 / 60,805 / 56461.500 / 1.077 / 1.074 / 56,640.2
5 / 1997 / 1 / 49,709 / 57711.500 / 0.861 / 0.864 / 57,546.9
6 / 1997 / 2 / 62,155 / 58891.000 / 1.055 / 1.047 / 59,364.7
7 / 1997 / 3 / 60,623 / 59774.750 / 1.014 / 1.016 / 59,687.9
8 / 1997 / 4 / 65,349 / 60420.000 / 1.082 / 1.074 / 60,872.9
9 / 1998 / 1 / 52,235 / 61043.625 / 0.856 / 0.864 / 60,471.2
10 / 1998 / 2 / 64,791 / 61503.375 / 1.053 / 1.047 / 61,882.4
11 / 1998 / 3 / 62,976 / 61995.000 / 1.016 / 1.016 / 62,004.6
12 / 1998 / 4 / 66,674 / 62612.875 / 1.065 / 1.074 / 62,107.2
13 / 1999 / 1 / 54,843 / 63464.750 / 0.864 / 0.864 / 63,490.4
14 / 1999 / 2 / 67,126 / 64609.875 / 1.039 / 1.047 / 64,112.6
15 / 1999 / 3 / 67,456 / 65738.625 / 1.026 / 1.016 / 66,415.5
16 / 1999 / 4 / 71,355 / 66820.000 / 1.068 / 1.074 / 66,467.6
17 / 2000 / 1 / 59,192 / 67904.625 / 0.872 / 0.864 / 68,525.1
18 / 2000 / 2 / 71,428 / 68854.875 / 1.037 / 1.047 / 68,221.5
19 / 2000 / 3 / 71,831 / 1.016 / 70,723.0
20 / 2000 / 4 / 74,582 / 1.074 / 69,473.5
Calculation of Seasonal Indexes
1 / 2 / 3 / 4
1996 / 1.004 / 1.077
1997 / 0.861 / 1.055 / 1.014 / 1.082
1998 / 0.856 / 1.053 / 1.016 / 1.065
1999 / 0.864 / 1.039 / 1.026 / 1.068
2000 / 0.872 / 1.037
mean: / 0.863 / 1.046 / 1.015 / 1.073 / 3.997
adjusted: / 0.864 / 1.047 / 1.016 / 1.074 / 4.000
Regression Analysis
0.978 / r²
0.989 / r
776.800 / std. error of estimate
20 / observations
1 / predictor variable
Des-Sales($M) / dependent variable
variables / coefficients / std. error / t (df=18) / p-value
intercept / a = / 53,252.6961
t / b = / 843.11210386 / 30.12300672 / 27.99 / 2.73E-16
ANOVA table
Source / SS / df / MS / F / p-value
Regression / 472,707,283.0830 / 1 / 472,707,283.0830 / 783.38 / 2.73E-16
Residual / 10,861,524.5394 / 18 / 603,418.0300
Total / 483,568,807.6223 / 19
Predicted values for: Des-Sales($M)
95% Confidence Interval / 95% Prediction Interval
t / Predicted / lower / upper / lower / upper
1 / 54,095.80817 / 53,392.50581 / 54,799.11052 / 52,318.71809 / 55,872.89824
2 / 54,938.92027 / 54,288.88814 / 55,588.95240 / 53,182.23114 / 56,695.60940
3 / 55,782.03237 / 55,183.31742 / 56,380.74733 / 54,043.67840 / 57,520.38635
4 / 56,625.14448 / 56,075.24657 / 57,175.04239 / 54,902.99389 / 58,347.29506
5 / 57,468.25658 / 56,963.94905 / 57,972.56411 / 55,760.11695 / 59,176.39622
6 / 58,311.36869 / 57,848.47050 / 58,774.26688 / 56,614.99324 / 60,007.74413
7 / 59,154.48079 / 58,727.59245 / 59,581.36913 / 57,467.57576 / 60,841.38582
8 / 59,997.59289 / 59,599.84569 / 60,395.34010 / 58,317.82572 / 61,677.36007
9 / 60,840.70500 / 60,463.63431 / 61,217.77568 / 59,165.71329 / 62,515.69671
10 / 61,683.81710 / 61,317.52210 / 62,050.11211 / 60,011.21824 / 63,356.41596
11 / 62,526.92921 / 62,160.63420 / 62,893.22421 / 60,854.33034 / 64,199.52807
12 / 63,370.04131 / 62,992.97063 / 63,747.11199 / 61,695.04960 / 65,045.03302
13 / 64,213.15341 / 63,815.40621 / 64,610.90062 / 62,533.38624 / 65,892.92059
14 / 65,056.26552 / 64,629.37718 / 65,483.15385 / 63,369.36049 / 66,743.17055
15 / 65,899.37762 / 65,436.47943 / 66,362.27581 / 64,203.00217 / 67,595.75307
16 / 66,742.48973 / 66,238.18219 / 67,246.79726 / 65,034.35009 / 68,450.62936
17 / 67,585.60183 / 67,035.70392 / 68,135.49974 / 65,863.45124 / 69,307.75241
18 / 68,428.71393 / 67,829.99897 / 69,027.42889 / 66,690.35996 / 70,167.06790
19 / 69,271.82604 / 68,621.79391 / 69,921.85816 / 67,515.13691 / 71,028.51516
20 / 70,114.93814 / 69,411.63579 / 70,818.24049 / 68,337.84807 / 71,892.02821
21 / 70,958.05024 / 70,199.93620 / 71,716.16429 / 69,158.56370 / 72,757.53679
22 / 71,801.16235 / 70,987.00642 / 72,615.31828 / 69,977.35731 / 73,624.96738
23 / 72,644.27445 / 71,773.08382 / 73,515.46509 / 70,794.30471 / 74,494.24420
24 / 73,487.38656 / 72,558.35123 / 74,416.42188 / 71,609.48305 / 75,365.29006
33.Answers will vary.
35.
The median is increasing $18,150 per year, while the average is increasing much more rapidly ($70,000 per year).
18-1