Sponge prokaryote communities in Taiwanese coral reef and shallow hydrothermal vent ecosystems

Coelho FJRC1, Cleary DFR1, Gomes NCM1, ARM Pólonia1*, YM Huang2, 4, L-L Liu3, NJ de Voogd4

1Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

2Department of Marine Recreation, University of Science and Technology, Penghu, Taiwan

3Department of Oceanography, National Sun Yet-Sen University, Kaohsiung, Taiwan

4Naturalis Biodiversity Center, Leiden, the Netherlands

* Present address: Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal

Predictive gene enrichment

To predict the metagenome of each sample, we used PICRUSt (http://picrust.github.com/picrust/ - Version 1.0) [1]. The script can be used to predict the metagenome. Detail explanations can be found in http://picrust.github.io/picrust/tutorials/metagenome_prediction.html#metagenome-prediction-tutorial.

#Pick OTUs for use in PICRUSt (QIIME)

echo "pick_otus:enable_rev_strand_match True" > $PWD/otu_picking_params_97.txt

echo "pick_otus:similarity 0.97" > $PWD/otu_picking_params_97.txt

pick_closed_reference_otus.py -i $PWD/seqs.fna -o $PWD/ucrC97/ -p $PWD/otu_picking_params_97.txt -r $PWD/gg_13_5_otus/rep_set/97_otus.fasta -t $PWD/gg_13_5_otus/taxonomy/97_otu_taxonomy.txt

#Normalize OTU table

normalize_by_copy_number.py

-i otu_table.biom

-o normalized_otus.biom

#Predict function for metagenome

predict_metagenomes.py

-i normalized_otus.biom

-o metagenome_predictions.biom

-a nsti_per_sample.tab

# Collapse predictions into pathways (third level)

Categorize_by_function.py -i metagenome_predictions.biom -c KEGG_Pathways -l 3 -o predicted_metagenomes.L3.biom

BLAST analysis

Sequence Identifiers of closely related taxa of selected OTUs (≥ 1500 sequences) were downloaded using the NCBI Basic Local Alignment Search Tool (BLAST) command line 'blastn' tool with the -db argument set to nt [2]. BLAST identifies locally similar regions between sequences, compares sequences to extant databases and assesses the significance of matches; functional and evolutionary relationships can subsequently be inferred. Each run produces a list of hits based on significant similarity between pairs of sequences, i.e., the target sequence and taxa present in the database (or no hits if no significantly similar sequences are found). A discussion of how significance is determined can be found at http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.

We used the blastn command line tool in a Linux environment to query representative sequences of selected taxa including all of the most abundant prokaryote (≥ 1500 sequences) OTUs against the online NCBI nucleotide database. We then generated vectors containing sequence identifiers (GI's) of the ten top hits of all representative sequences and used the Entrez.efetch function in BioPython [3] with the rettype argument set to 'gb' to download genbank information of aforementioned top hits including the isolation source of the organism and the host if relevant.

Figure S1: Phylogenetic tree of the Alphaprotobacterial 16S rRNA gene sequences recovered from coral reef and hydrothermal vent habitat. 16S rRNA gene reference sequences of related culture strains representatives (Nisaea nitritireducens, Rhodospirillum rubrum strain and Pelagibacter ubique) were included. Rhizobium ciceri and Pelagibacter unique were also included as representatives of Rhizobiales and Rickettsiales order. Sequences assigned to Kiloniellales from Cleary et al. (2013) and sequences assigned to Alphaproteobacteria from were also included Weigel and Erwin (2016). The number of each OTU and classification at order level is indicated as are GenInfo sequence identifiers of sequences obtained using BLAST. For organisms found using BLAST, we include the host and/or habitat from which the organism was isolated as well as the geographical locality where the organism was isolated.

Figure S2: Ordination showing the first two axes of the principal coordinates analysis (PCO) of KEGG orthologs (KOs) predictions using 16S data with PICRUSt. Only sponges with a minimum of three replicates were analysed. Aa - Acanthella cavernosa, Ea - Echinodictyum asperum, Js - Jaspis splendens, Ps - Ptilocaulis sp., and Hy - Hymeniacidon sp. and Wt – water.

hylogenetic tree of the bacterial 16S

rRNA gene sequenc es recovered from

Suberites diversicolor and Cinachyrella

australiensis hosts in lake Kakaban, Haji Buang

lake, Maratua and open habitat; bootstrap

values lower than 50% were omitted. The

number of each OTU is indicated as are

GenInfo sequence identifiers of sequences

obtained using

BLAST. Classes of bacteria are

indicated. OTUs are assigned to the following

clusters: Sub: found in Suberites diversicolor

hosts, Cin-Opn: found in C. australiensis hosts

in open habitat, Cin-Lak: found in

C. australiensis hosts in lake habitat, Ubq:

ubiquitous, found in all host individuals. For

organisms found using BLAST, we include the

host and/or habitat from which the organism

was isolated as well as the geographical

locality where the organism was isolated.

Table S1: List of most abundant bacterial OTUs (≥ 1500 sequences). The table includes the OTU-numbers (OTU); taxonomic assignment generated by QIIME; Acession (Acc), sequence similarity of the closest matches with our representative OTU sequences (Seq. Sim.) and the source of these organisms (Source/Context).

OTU / Abund / Phylum / Class / Order / Family / Genus / Acc / Seq. Sim (%) / Source/Context (Sponges genus previously found to include LMA sponges are highlighted in bold) / Reference that identifies sponge genus as LMA
1 / 62053 / Proteobacteria / Alphaproteobacteria / Unclassified / Unclassified / Unclassified / GU981955 / 97.64 / Tedania ignis|Bahamas: Sweetings Cay, Mangrove / [5]
3 / 25726 / Proteobacteria / Alphaproteobacteria / Kiloniellales / Unclassified / Unclassified / FJ358860 / 98.12 / Marine reef sandy sediment
5 / 13783 / Cyanobacteria / Synechococcophycideae / Synechococcales / Synechococcaceae / Synechococcus / KT731849 / 100 / surface seawater from Changing estuary
6 / 12833 / Proteobacteria / Deltaproteobacteria / [Entotheonellales] / [Entotheonellaceae] / Unclassified / JF809701 / 95.1 / Medea hypersaline basin, Mediterranean Sea
7 / 12039 / Proteobacteria / Betaproteobacteria / EC94 / Unclassified / Unclassified / HQ241773 / 95.32 / Tsitsikamma favus|South Africa: Alagoa Bay
9 / 12296 / Proteobacteria / Gammaproteobacteria / Chromatiales / Unclassified / Unclassified / GU982100 / 95.98 / Aplysina fulva|Bahamas:Sweetings Cay
10 / 13510 / Cyanobacteria / Synechococcophycideae / Synechococcales / Synechococcaceae / Prochlorococcus / KR857588 / 99.76 / Genomic DNA|Orca Basin North hypersaline sediment
11 / 7336 / Actinobacteria / Acidimicrobiia / Acidimicrobiales / Unclassified / Unclassified / KF597097 / 94.37 / Poecillastra compressa / [6]
12 / 7631 / Proteobacteria / Gammaproteobacteria / Chromatiales / Unclassified / Unclassified / JX455272 / 95.76 / Cymbastella coralliophila|Great Barrier Reef / [7]
14 / 17885 / Proteobacteria / Gammaproteobacteria / Unclassified / Unclassified / Unclassified / JN850859 / 95.11 / Raspailia topsenti|marine sponge from a temperate shelf and sea biome, 8-10m depth / [8]
15 / 7629 / Proteobacteria / Betaproteobacteria / EC94 / Unclassified / Unclassified / KF373187 / 95.98 / Haliclona sp.|coral reef, India Gulf of Mannar / [9]
16 / 7032 / Proteobacteria / Gammaproteobacteria / Chromatiales / Unclassified / Unclassified / KJ007847 / 99.11 / Axinella sp.|China / [10]
19 / 6682 / Proteobacteria / Gammaproteobacteria / Chromatiales / Unclassified / Unclassified / KC925758 / 92.86 / Oujiang river
22 / 4556 / Crenarchaeota / Thaumarchaeota / Cenarchaeales / Cenarchaeaceae / Unclassified / KJ504349 / 99.51 / Mycale_laxissima|Key Largo USA / [11]
23 / 5191 / Spirochaetes / Spirochaetes / Unclassified / Unclassified / Unclassified / HQ241785 / 93.54 / Tsitsikamma favus|South Africa: Algoa Bay
24 / 4530 / Proteobacteria / Gammaproteobacteria / Thiohalorhabdales / Unclassified / Unclassified / HQ877729 / 97.99 / Phakellia fusca|South China sea / [12]
31 / 6799 / Proteobacteria / Alphaproteobacteria / Rickettsiales / Pelagibacteraceae / Unclassified / EU802926 / 99.76 / Northeast of Colon, Panama
33 / 3706 / Actinobacteria / Acidimicrobiia / Acidimicrobiales / OCS155 / Unclassified / KU243315 / 99.76 / Scleractinian coral
39 / 3032 / Nitrospirae / Nitrospira / Nitrospirales / Nitrospiraceae / Unclassified / FJ215390 / 99.54 / Axinella corrugata / [10]
41 / 2906 / Proteobacteria / Betaproteobacteria / EC94 / Unclassified / Unclassified / JQ062689 / 91.54 / Callyspongia vaginalis / [7]
42 / 2474 / Chloroflexi / SAR202 / Unclassified / Unclassified / Unclassified / AY942767 / 97.64 / Cymbastela concentrica / [7]
45 / 2176 / Bacteroidetes / Flavobacteriia / Flavobacteriales / Flavobacteriaceae / Unclassified / KX936618 / 99.77 / surface seawater Changjiang estuary
46 / 1961 / Crenarchaeota / Thaumarchaeota / Cenarchaeales / Cenarchaeaceae / Cenarchaeum / JX262712 / 99.75 / Axinella carteri / [10]
53 / 2729 / Proteobacteria / Betaproteobacteria / EC94 / Unclassified / Unclassified / JN850798 / 92.2 / Raspailia topsenti|marine sponge from a temperate shelf and sea biome, 8-10m depth / [13]
54 / 4179 / Bacteroidetes / Flavobacteriia / Flavobacteriales / Cryomorphaceae / Bacteroidetes / JQ195628 / 99.77 / seawater
60 / 1562 / Bacteroidetes / Flavobacteriia / Flavobacteriales / Flavobacteriaceae / Unclassified / KU937395 / 99.77 / surface seawater from Changjiang estuary and adjacent areas
61 / 2053 / Proteobacteria / Alphaproteobacteria / Unclassified / Unclassified / Unclassified / KU937415 / 100 / North Atlantic sedimentary abyssal plain
62 / 1571 / Proteobacteria / Deltaproteobacteria / NB1-j / NB1-i / Unclassified / JQ062836 / 99.55 / Stylissa cartieri|Saudi Arabia / [13]
83 / 1528 / Proteobacteria / Gammaproteobacteria / Oceanospirillales / Halomonadaceae / Candidatus Portiera / KU578402 / 99.77 / Ocean seawater
88 / 1766 / Proteobacteria / Gammaproteobacteria / Oceanospirillales / Endozoicimonaceae / Unclassified / JN388027 / 98.67 / Ianthella basta
90 / 1886 / Proteobacteria / Alphaproteobacteria / Rhodobacterales / Rhodobacteraceae / Unclassified / KX890262 / 99.76 / water sample from Arabian Sea-Shelf
126 / 2343 / Proteobacteria / Alphaproteobacteria / Rickettsiales / Unclassified / Unclassified / KX427591 / 99.53 / porewater near yellow vent off Kueishan Island
747 / 2070 / Proteobacteria / Alphaproteobacteria / Unclassified / Unclassified / Unclassified / JQ435978 / 98.11 / Seawater Hymeniacidon perlevis
6735 / 14116 / Proteobacteria / Alphaproteobacteria / Unclassified / Unclassified / Unclassified / JQ435978 / 98.35 / Seawater Hymeniacidon perlevis
6896 / 2737 / Proteobacteria / Alphaproteobacteria / Unclassified / Unclassified / Unclassified / KJ007952 / 98.11 / Terpios hoshinota|China
11947 / 3003 / Proteobacteria / Alphaproteobacteria / Unclassified / Unclassified / Unclassified / JQ435978 / 97.64 / Seawater Hymeniacidon perlevis
12777 / 1734 / Proteobacteria / Alphaproteobacteria / Rickettsiales / Pelagibacteraceae / Unclassified / AY664069 / 99.76 / West Pacific Gyre

References

1. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31: 814-821.

2. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol 7: 203-214. doi: 10.1089/10665270050081478

3. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422-1423. doi: 10.1093/bioinformatics/btp163

4. Weigel BL, Erwin PM (2016) Intraspecific Variation in Microbial Symbiont Communities of the Sun Sponge, Hymeniacidon heliophila, from Intertidal and Subtidal Habitats. Appl Environ Microbiol 82: 650-658. doi: 10.1128/AEM.02980-15

5. Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M (2014) Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Marine Ecology 35: 414-424. doi: 10.1111/maec.12098

6. Kennedy J, Flemer B, Jackson SA, Morrissey JP, O'Gara F, Dobson ADW (2014) Evidence of a Putative Deep Sea Specific Microbiome in Marine Sponges. PLoS One 9: e91092. doi: 10.1371/journal.pone.0091092

7. Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6: 121-130. doi: 10.1046/j.1462-2920.2003.00545.x

8. Schmitt S, Deines P, Behnam F, Wagner M, Taylor MW (2011) Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiol Ecol 78: 497-510. doi: 10.1111/j.1574-6941.2011.01179.x

9. Sipkema D, Holmes B, Nichols SA, Blanch HW (2009) Biological Characterisation of Haliclona (?gellius) sp.: Sponge and Associated Microorganisms. Microb Ecol 58: 903-920. doi: 10.1007/s00248-009-9534-8

10. White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV (2012) Pyrosequencing of Bacterial Symbionts within <italic>Axinella corrugata</italic> Sponges: Diversity and Seasonal Variability. PLoS One 7: e38204. doi: 10.1371/journal.pone.0038204

11. Schmitt S, Wehrl M, Lindquist N, Weisz JB, Hentschel U (2007) Morphological and Molecular Analyses of Microorganisms in Caribbean Reef Adult Sponges and in Corresponding Reproductive Material. Faculty Publications Submission 1: 561-568.

12. Schöttner S, Hoffmann F, Cárdenas P, Rapp HT, Boetius A, Ramette A (2013) Relationships between Host Phylogeny, Host Type and Bacterial Community Diversity in Cold-Water Coral Reef Sponges. PLoS One 8: e55505. doi: 10.1371/journal.pone.0055505

13. Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S (2013) Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol 83: 232-241. doi: 10.1111/j.1574-6941.2012.01467.x