1

Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen

Supplemental Information

1

Table S1. Energy-generating reactions, and their computed G´ values, included in the growth yield literature survey

ReactionG´ (kJ/rxn)

Ethanol

  1. CH3CH2OH + 3O2(aq)  2HCO3- + H2O + 2H+-1308
  2. CH3CH2OH + 2.4NO3- + 0.4H+  2HCO3- + 1.2N2(aq) + 2.2H2O-1257
  3. CH3CH2OH + 6S0(s) + 5H2O  2HCO3- + 6HS- + 8H+-167
  4. CH3CH2OH + 0.5SO42-  CH3COO- + 0.5HS- + H2O + 0.5H+-75.0
  5. CH3CH2OH + 0.85SO42-  0.65CH3COO- + 0.7HCO3-+ 0.85HS- + H2O + 0.5H+-95.7
  6. CH3CH2OH + H2O  CH3COO- + 2H2(aq) + H+-14.6

Lactate

  1. CH3CHOHCOO- + 3O2(aq)  3HCO3- + 2H+-1333
  2. CH3CHOHCOO- + 2.4NO3- + 0.4H+  3HCO3- + 1.2N2(aq) + 1.2H2O-1282
  3. 1.25CH3CHOHCOO- + 13Fe(OH)3(s) + 0.75H+  1.25CH3COO-+ 1.25HCO3-+ 4Fe3O4(s) + Fe2+ + 20.5H2O-462
  4. CH3CHOHCOO- + 2S0(s) + 2H2O  CH3COO- + HCO3-+ 2HS- + 3H+-111
  5. CH3CHOHCOO- + 0.5SO42-  CH3COO- + HCO3-+ 0.5HS-+ 0.5H+-100
  6. CH3CHOHCOO- + 2H2O  CH3COO- + HCO3-+ 2H2(aq) + H+-3.3a, -6.4b

Propionate

  1. CH3CH2COO- + 3.5O2(aq)  3HCO3- + 2H+-1487
  2. CH3CH2COO- + 1.75SO42-  3HCO3- + 1.75HS- + 0.25H+-118
  3. CH3CH2COO- + 0.75SO42-  CH3COO- + HCO3- + 0.75HS- + 0.25H+-59.0
  4. CH3CH2COO- + 3H2O  CH3COO- + HCO3- + 3H2(aq) + H+-24.8b

Butyrate

  1. CH3CH2CH2COO- + 2.5SO42-  4HCO3- + 2.5HS- + 0.5H+-171
  2. CH3CH2CH2COO- + 2H2O  2CH3COO- + 2H2(aq) + H+-30.7b

Acetate

  1. CH3COO- + 2O2(aq)  2HCO3- + H+-847
  2. CH3COO- + 1.6NO3- + 0.6H+  2HCO3- + 0.8N2(aq) + 0.8H2O-813
  3. CH3COO- + 4MnO2(s) + 7H+  2HCO3- + 4Mn2+ + 4H2O-625
  4. 1.125CH3COO- + 25Fe(OH)3(s) + 0.875H+  2.25HCO3-+ 8Fe3O4(s) + Fe2+ + 38.5H2O-737
  5. CH3COO- + 4S0(s) + 4H2O  2HCO3- + 4HS- + 5H+-86.8
  6. CH3COO- + SO42-  2HCO3- + HS--64.7
  7. CH3COO- + H2O  HCO3- + CH4(aq)-31.7

Formate

  1. HCOO- + 0.5O2(aq)  HCO3--234
  2. HCOO- + 0.4NO3- + 0.4H+  HCO3- + 0.2N2(aq) + 0.2H2O-225
  3. HCOO- + 0.25NO3- + 0.25H2O + 0.5H+  HCO3- + 0.25NH4+-150
  4. HCOO- + 0.25H2O + 0.25H+  0.25NH4+ + 0.75HCO3--29.8

7. Hydrogen

  1. H2(aq) + 0.4NO3- + 0.4H+  0.2N2(aq) + 1.2H2O-226
  2. H2(aq) + 0.25NO3- + 0.5H2O  0.25NH4+ + 0.75H2O-151
  3. H2(aq) + 7Fe(OH)3(s) + 2H+  2Fe3O4(s) + Fe2+ + 13H2O-231
  4. H2(aq) + 0.25SO42- + 0.25H+  0.25HS- + H2O-38.8
  5. H2(aq) + 0.25HCO3- + 0.25H+  0.25CH4(aq) + 0.75H2O-31.3

8. Glucose

  1. C6H12O6 + 4O2  6HCO3- + 6H+-2883
  2. C6H12O6 + 4.8NO3-  6HCO3- + 2.4N2(aq) + 1.2H+ + 2.4H2O-2774
  3. C6H12O6 + 2.4H2O  0.7CH3CH2CH2COO-+ 0.6CH3COO- + 2HCO3- + 2.6H2(aq) + 3.3H+-326a
  4. C6H12O6 + 0.6H2O  1.2CH3CH2OH+ CH3COO- + 1.2HCO3- + 0.4H2(aq) + 0.4 HCOO- + 2.6H+-275a

a Fermentative growth; H2(aq) = 2  10-5 M

b Syntrophic growth coupled to methanogenesis; H2(aq) =1 10-8 M

1

1

1

Table S3. Reactant and product concentrations used for free energy calculations.

Species / Concentration (M)
CH3CH2OH (ethanol), reactanta / 1  10-2
CH3CHOHCOO- (lactate), reactant / 1  10-2
CH3CH2COO- (propionate), reactant / 1  10-2
CH3CH2CH2COO- (butyrate), reactant / 1  10-2
CH3COO- (acetate), reactant / 1  10-2
HCOO- (formate), reactant / 1  10-2
H2(aq), reactant / 6.4  10-4
C6H12O6 (glucose), reactant / 1  10-2
O2(aq), reactant / 2.5  10-4
NO3-, reactant / 1  10-2
SO42-, reactant / 1  10-2
H+, reactant or productb / 1  10-7
HCO3-, reactant or product / 1  10-2
N2(aq), product / 1  10-3
NH4+, product / 1  10-3
Mn2+, product / 1  10-3
Fe2+, product / 1  10-3
HS-, product / 1  10-3
CH4(aq), product / 1  10-3
CH3COO- (acetate), product / 1  10-3
CH3CH2CH2COO- (butyrate), product / 1  10-3
CH3CH2OH (ethanol), product / 1  10-3
H2(aq), product, fermentation / 2  10-4
H2(aq), product, syntrophic growth / 1  10-8
arefers to species on the left-hand side of reactions listed in Table S1
brefers to species on the right-hand side of reactions listed in Table S1

1

REFERENCES

1.Andrews, G. F. 1993. The yield equations in the modeling and control of bioprocesses. Biotechnol. Bioeng. 42:549-556.

2.Badziong, W., and R. K. Thauer. 1978. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as sole energy sources. Arch. Microbiol. 117:209-214.

3.Badziong, W., R. K. Thauer, and J. G. Zeikus. 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116:41-49.

4.Balk, M., M. Altinbas, W. I. C. Rijpstra, J. S. S. Damste, and A. J. M. Stams. 2008. Desulfatirhabdium butyrativorans gen. nov., sp nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor. Int. J. Syst. Evol. Microbiol. 58:110-115.

5.Beaty, P. S., and M. J. McInerney. 1989. Effects of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl. Environ. Microbiol. 55:977-983.

6.Birou, B., I. W. Marison, and U. Vonstockar. 1987. Calorimetric investigation of aerobic fermentations. Biotechnol. Bioeng. 30:650-660.

7.Brandis-Heep, A., N. A. Gebhardt, R. K. Thauer, F. Widdel, and N. Pfennig. 1983. Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei.1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch. Microbiol. 136:222-229.

8.Brandis, A., and R. K. Thauer. 1981. Growth of Desulfovibrio species on hydrogen and sulfate as sole energy source. J. Gen. Microbiol. 126:249-252.

9.Caccavo, F., R. P. Blakemore, and D. R. Lovley. 1992. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire. Appl. Environ. Microbiol. 58:3211-3216.

10.Caccavo, F., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:3752-3759.

11.Chen, F., Q. Xia, and L. K. Ju. 2006. Competition between oxygen and nitrate respirations in continuous culture of Pseudomonas aeruginosa performing aerobic denitrification. Biotechnol. Bioeng. 93:1069-1078.

12.Christensson, M., E. Lie, and T. Welander. 1994. A comparison between ethanol and methanol as carbon-sources for denitrification. Water Science and Technology 30:83-90.

13.Crabbendam, P. M., O. M. Neijssel, and D. W. Tempest. 1985. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture. Arch. Microbiol. 142:375-382.

14.Devries, W., H. Vanberchum, and A. H. Stouthamer. 1984. Localization of hydrogenase and nitrate reductase in Campylobacter sputorum subspecies bubulus. Antonie van Leeuwenhoek Int. J. Gen. Molec. Microbiol. 50:63-73.

15.Devries, W., H. G. D. Niekus, M. Boellaard, and A. H. Stouthamer. 1980. Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors. Arch. Microbiol. 124:221-227.

16.Elferink, S., A. Visser, L. W. H. Pol, and A. J. M. Stams. 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15:119-136.

17.Farmer, I. S., and C. W. Jones. 1976. Energetics of Escherichia coli during aerobic growth in continuous culture. Eur. J. Biochem. 67:115-122.

18.Goldberg, I., J. S. Rock, A. Benbassat, and R. I. Mateles. 1976. Bacterial yields on methanol, methylamine,formaldehyde, and formate. Biotechnol. Bioeng. 18:1657-1668.

19.Heijnen, J. J., and J. A. Roels. 1981. A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol. Bioeng. 23:739-763.

20.Heijnen, J. J., and J. P. Vandijken. 1992. In search of a thermodynamic description of biomass yields for the chemotropic growth of microorganisms. Biotechnol. Bioeng. 39:833-858.

21.Heyndrickx, M., P. Devos, and J. Deley. 1991. Fermentation characteristics of Clostridium pasteurianum LMG-3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70:52-58.

22.Huser, B. A., K. Wuhrmann, and A. J. B. Zehnder. 1982. Methanothrix soehngenii gen. nov., sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1-9.

23.Ingvorsen, K., A. J. B. Zehnder, and B. B. Jorgensen.1984. Kinetics of sulfate and acetate uptake by Desulfobacter postgatei. Appl. Environ. Microbiol. 47:403-408.

24.Jain, M. K., T. E. Thompson, E. C. Demacario, and J. G. Zeikus. 1987. Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii, sp. nov. Syst. Appl. Microbiol. 9:77-82.

25.Kostka, J. E., D. D. Dalton, H. Skelton, S. Dollhopf, and J. W. Stucki. 2002. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68:6256-6262.

26.Kristjansson, J. K., P. Schonheit, and R. K. Thauer. 1982. Different Ks values for hydrogen of methanogenic bacteria and methanogenic bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131:278-282.

27.Laanbroek, H. J., H. J. Geerligs, L. Sijtsma, and H. Veldkamp. 1984. Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl. Environ. Microbiol. 47:329-334.

28.Lien, T., M. Madsen, I. H. Steen, and K. Gjerdevik. 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48:469-474.

29.Linton, J. D., and R. J. Stephenson. 1978. Preliminary study on growth yields in relation to carbon and energy content of various organic growth substrates. FEMS Microbiol. Lett. 3:95-98.

30.Lovitt, R. W., D. B. Kell, and J. G. Morris. 1987. The physiology of Clostridium sporogenes NCIB 8053 growing in defined media. J. Appl. Bacteriol. 62:81-92.

31.Lovley, D. R., and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:1472-1480.

32.Lupton, F. S., and J. G. Zeikus.1984. Physiological basis for sulfate-dependent hydrogen competition between sulfidogens and methanogens. Current Microbiology 11:7-12.

33.Moser, D. P., and K. H. Nealson. 1996. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62:2100-2105.

34.Noguera, D. R., G. A. Brusseau, B. E. Rittmann, and D. A. Stahl.1998. Unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnol. Bioengin. 59:732-746.

35.Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58:703-705.

36.Patel, G. B. 1984. Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Canadian Journal of Microbiology 30:1383-1396.

37.Pfennig, N., and H. Biebl. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3-12.

38.Robinson, J. A., and J. M. Tiedje. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26-32.

38a. Rittmann, B. E., and P. L. McCarthy. 2001. Environmental biotechnology. McGraw-Hill, Boston, MA.

39.Roden, E. E., and D. R. Lovley. 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59:734-742.

40.Roden, E. E., and J. M. Zachara. 1996. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30:1618-1628.

41.Sass, H., J. Overmann, H. Rutters, H. D. Babenzien, and H. Cypionka. 2004. Desulfosporomusa polytropa gen. nov., sp nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake. Arch. Microbiol. 182:204-211.

42.Schauer, N. L., and J. G. Ferry. 1980. Metabolism of formate in Methanobacterium formicicum. J. Bacteriol. 142:800-807.

43.Scholten, J. C. M., and R. Conrad. 2000. Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl. Environ. Microbiol. 66:2934-2942.

44.Smith, M. R., and R. A. Mah. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36:870-879.

45.Smith, M. R., and R. A. Mah. 1980. Acetate as sole carbon and energy source for growth of Methanosarcina strain 227. Appl. Environ. Microbiol. 39:993-999.

46.Stieb, M., and B. Schink. 1989. Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch. Microbiol. 151:126-132.

47.Stouthamer, A. H. 1988. Dissimilatory reduction of oxidized nitrogen compounds, p. 245-303. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, New York.

48.Strohm, T. O., B. Griffin, W. G. Zumft, and B. Schink. 2007. Growth yields in bacterial denitrification and nitrate ammonification. Appl. Environ. Microbiol. 73:1420-1424.

49.Szewzyk, R., and N. Pfennig. 1990. Competition for ethanol between sulfate-reducing and fermenting bacteria. Arch. Microbiol. 153:470-477.

50.Tang, Y. J. J., A. L. Meadows, and J. D. Keasling. 2007. A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol. Bioeng. 96:125-133.

51.Touzel, J. P., G. Prensier, J. L. Roustan, I. Thomas, H. C. Dubourguier, and G. Albagnac. 1988. Description of a new strain of Methanothrix soehngenii and rejection of Methanothrix concilii as a synonym of Methanothrix soehngenii. Int. J. Syst. Bacteriol. 38:30-36.

52.Traore, A. S., M. L. Fardeau, C. E. Hatchikian, J. Legall, and J. P. Belaich. 1983. Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri - Interspecies hydrogen transfer in batch and continuous cultures. Appl. Environ. Microbiol. 46:1152-1156.

53.Vasiliadou, I. A., S. Siozios, I. T. Papadas, K. Bourtzis, S. Pavlou, and D. V. Vayenas.2006. Kinetics of pure cultures of hydrogen-oxidizing denitrifying bacteria and modeling of the interactions among them in mixed cultures. Biotechnol. Bioeng. 95:513-525.

54.Verduyn, C. 1991. Physiology of yeasts in relation to biomass yields. Antonie Van Leeuwenhoek 60:325-353.

55.von Stockar, U., and J. S. Liu. 1999. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta-Bioenerg. 1412:191-211.

56.Wallrabenstein, C., E. Hauschild, and B. Schink. 1995. Syntrophobacter pfennigii sp nov, new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch. Microbiol. 164:346-352.

57.Weimer, P. J., and J. G. Zeikus. 1978. One carbon betabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch. Microbiol. 119:49-57.

58.Weimer, P. J., and J. G. Zeikus. 1978. Acetate metabolism in Methanosarcina barkeri. Arch. Microbiol. 119:175-182.

59.Widdel, F., and N. Pfenning. 1977. A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112:119-122.

60.Widdel, F., and N. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids.1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments - description of Desulfobacter postgatei gen. nov., sp.nov. Arch. Microbiol. Biotechnol. 129:395-400.

61.Widdel, F., and N. Pfennig. 1982. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 2. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131:360-365.

62.Xiao, J., and J. M. VanBriesen. 2008. Expanded thermodynamic true yield prediction model: adjustments and limitations. Biodegradation 19:99-127.

63.Yang, S. T., and M. R. Okos. 1987. Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol. Bioeng. 30:661-667.

64.Zehnder, A. J. B., and K. Wuhrmann. 1977. Physiology of a Methanobacterium strain Az. Arch. Microbiol. 111:199-205.

65.Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann.1980. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124:1-11.

66.Zeikus, J. G., and D. L. Henning. 1975. Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek Int. J. Gen. Molec. Microbiol. 41:543-552.