LAB 6 – BINARY FREQUENCY SHIFT KEYING (BINARY FSK) MODULATOR
1.Introduction
Frequency shift keying (FSK) is a relatively simple, low-performance form of digital modulation. Binary FSK is a form of FSK where the input signal can have only two different values (hence the name binary). Binary FSK is a constant-envelope form of angle modulation similar to conventional frequency modulation except that the modulating signal varies between two discrete Voltage levels (i.e., l’s and 0’s) rather than with a continuously changing value, such as a sine wave. Binary FSK is the most common form of FSK. With Binary FSK, the center or carrier frequency is shifted (deviated) by the binary input signal. Consequently, the output from an FSK modulator is a step function in the frequency domain. As the binary input signal changes from a logic 0 to a logic 1 and vice versa, the FSK output signal shifts between two frequencies; a mark or logic 1 frequency and a space or logic 0 frequency.In this experiment, the XR-2206 monolithic function generator is used for the FSK modulator.
2.Materials Required
Equipment
1 / - protoboard1 / dual dc power supply(+l2 Vdc and -1 to +3 Vdc)
1 / - medium frequency function generator (100 kHz)
1 / - standard oscilloscope (10 MHz)
1 / - assortment of test leads and hookup wire
Parts List
1 / XR-2206 function generator / 1 / 47-k resistor3 / 4.7-k resistors / 1 / 1-k variable resistor
1 / 8.2-k resistor / 2 / 0.001 F capacitor
1 / 12-k resistor / 2 / 1 F capacitors
1 / 33-k resistor / 1 / 10 F capacitor
3.Pre-lab
Bring the XR-2206 data sheet to the lab session.
In the Frequency Sweep and Modulation section of the data sheet, find and record the equation for the theoretical frequency of operation, f, as a function of R, C, RC, and VC. (Note that the components have different designations in Circuit 1, below.)
In the FSKGeneration section of the data sheet, find and record the equation for the theoretical frequencies, f1 and f2, as a function of R1, R2, C, and the FSK input Voltage.
4.Circuit 1 – Frequency-Shift-Keyed, Frequency Sweep Mode
In this section, the XR-2206 function generator operating in the sweep mode is used to produce binary FSK. The Frequency Sweep and Modulation section of the XR-2206 data sheet discusses this mode. The schematic diagram for the FSK modular circuit used in this section is shown in Figure 1.
Figure 1. FSK Generation, Sweep Mode.
Procedure
IMPORTANT – when you construct this circuit, confine it to half the protoboard. Only a few components change when you convert it to Circuit 2, and you will re-use Circuit 2 in Lab 7. Lab 7 requires both an FSK modulator and a phase-locked loop detector.
1.Construct the binary FSK modulator circuit shown in Figure 1.
2.Connect the two Vcterminals to each other andadjust R3to obtain a sine wave with minimum distortion at Vout.
3.Measure the frequencyof the signal at Vout. This is the unmodulated carrier frequency, fc. Calculate the theoretical fc, using the design equations in the XR-2206 data sheet. Compare this to your measured data
4.Remove the short across the Vc terminals and apply+1 Vdc (logic 1), and record the frequency of Vout. This is the output mark frequency (fm).
5.Adjust the Vc to -1 Vdc (logic 0), and record the frequency of Vout. This is the output space frequency (fs).
6.Calculate the theoretical values for fm and fs, using the design equations in the XR-2206 data sheet. Compare these to your measured data from steps 4 and 5.
7.Replace the dc bias supply with a function generator, and set the output of the function generator to a 10 kHz, 2 Vp-p square wave (i.e., ±1 V).
8.Observe the binary FSK waveform at Vout.(It will be necessary to use the single sweep mode of the oscilloscope as the Vout frequency is not synchronized to that of the function generator..)
9.Sketch the digital waveform observed at the function generator output and the binary FSK waveform observed at the output of the modulator (Vout). Be sure that a transition of the signal generator waveform is about in the center of the waveforms.
10.Describe the relationship between the two waveforms sketched in step 9.
11.Measure the mark and space frequencies, and calculate the modulation index using theformula below. (To do this, adjust the oscilloscope to trigger on a positive transition of the signal generator signal, expand the trace so that only a few cycles of Vout are visible, and measure the mark frequency. Then adjust the oscilloscope to trigger on a negative transition of the signal generator signal and measure the space frequency. Be sure to keep the oscilloscope in single-sweep mode. These will probably be slightly different than the values you measured in steps 4 and 5.)
wherem = modulation index (unitless)
fm= mark frequency (Hertz)
fs = space frequency (Hertz)
fb= binary input bit rate (20 kbps)
12.Using a Bessel table, determine the approximate number of significant side frequencies, and sketch the output frequency spectrum for the FSK waveform observed in step 7. (The result will be only approximate because the Bessel table shows the side frequencies when the modulating signal is a sinusoid. Here, the modulating signal is a square wave.)
13.Determine the minimum bandwidth required to propagate the FSK signal.
14.Determine the baud rate.
15.Vary the function generator output frequency.Describe what effect this has on the FSK waveform.
16.Measure the mark and space frequencies with the signal generator output set to a 10 kHz, 1-Vp-p square wave (i.e., ±0.5 V) and set to a 10 kHz, 4-Vp-p square wave (i.e., ±2 V). Describe what effect varying the signal-generator amplitude has on the FSK waveform.
5.Circuit 2 – Frequency Shift Keying, Timing Resistor Mode
In this section, the XR-2206 function generator operating in the timing resistor mode is used to generate binary FSK. The FSKGeneration section of the XR-2206 data sheet discusses this mode. The schematic diagram for the FSK modulator circuit used in this section is shown in Figure 2. Note that except for the components connected to pins 7, 8, and 9, this is the same circuit as Figure 1.
Figure 2. FSK Generation, Timing Resistor Mode.
Procedure
IMPORTANT – do not dismantle this circuit when you finish the lab. You will use it again for Lab 7.
1.Construct the binary FSK modulator circuit shown in Figure 2.
2.Set Vc to 0 Vdc and adjust R3until a sine wave with minimum distortion is observed at Vout.
3.Calculate the mark and space frequencies using the design equations in the XR-2206 data sheet.
4.Determine the actual mark frequency by settingVc to +3 Vdc and measuring the frequency of the waveform at Vout.
5.Determine the actual space frequency by setting Vcto 0 Vdc and measuring the frequency of the waveform at Vout.
6.Determine the switching Voltage by slowly increasing the magnitude of Vc until the output switches from the space to the mark frequency. Record the Voltage at which the frequency change occurs.
7.Replace the power supply that provides Vc with a function generator.Set the amplitude of the function generator output to 3-Vp-p, 10-kHz square wave and adjust its offset to1.5 Vdc. This will produce a waveform that switches between 0 and +3 V.
8.Observe the FSK output waveform at Vout. (Use the same method as in step 8 of the circuit-1 procedure.)
9.Sketch the binary waveform observed at the function generator output and the FSK waveformobserved at the modulator output (Vout).
10.Measure the mark and space frequencies, and calculate the modulation index using the same method as in step 11 of the circuit-1 procedure.
11.Describe the relationship between the two waveforms sketched in step 9.
12.Adjust the signal-generator frequency to 5 kHz and then to 15 kHz, while keeping the levels at 0 and 3 V.Describe what effect varying the signal-generator frequency has on the FSK signal.
13.Adjust Vc to a 10-kHz square wave switching between 0 and 2 V and then to a 10-kHz, 4-Vp-p square wave switching between 0 and 4 V. Does changing the amplitude of the square wave affect the FSK signal?
6. Discussion Questions
- In Figure 1, what determines the modulation index?
- In Figure 2, what determines the modulation index?
- Considering your answers to questions 1 and 2, if the input were a digital signal, which circuit would be better for an FSK modulator?
1