Electronic Supplementary Material

Multi-walled carbon nanotubes doped with boron as an electrode material for electrochemical studies on dopamine, uric acid, and ascorbic acid

Nikos G. Tsierkezos[1]• Uwe Ritter • Yudi Nugraha Thaha[2]• Clive Downing • Paweł Szroeder • Peter Scharff

Table S1 Literature reports regarding fabrication of B-MWCNTs by means of chemical vapor deposition,(a) electric arc discharge,(b) diffusion/solid state reaction,(c) substitution reaction/solid state reaction,(d) spark plasma sintering,(e) and laser vaporization(f) techniques

Type / C source / B source / Catalyst / Gas / T/oC / Refs.
CNTs(a) / C2H2 / B2H6 / CoNPs / He/H2 / 1000 / S[1]
MWCNTs(a) / CH3OH / H3BO3 / Fe(CH3COO)2 / 730 / S[2]
MWCNTs(a) / C8H10 / H3BO3 / FeCp2 / Ar / 900-950 / S[3]
SWCNTs(a) / C9H21BO3 / Fe/MgO / 780-910 / S[4]
MWCNTs(a) / C7H8 / (C2H5)3B / FeCp2 / Ar / 900-1100 / S[5]
MWCNTs(a) / C2H2 / BF3 / Fe/Ca(BO3)2/CaCO3 / H2/Ar / 800 / S[6]
CNTs(a) / FeCp2 / B2H6 / FeCp2 / Ar / 1050 / S[7]
MWCNTs(a) / C2H5OH / B2O3 / Ar/H2 / 527 / S[8]
MWCNTs(a) / C7H8 / (C2H5)3B / FeCp2 / Ar / 1000 / S[9]
DWCNTs(a) / CH4 / B2H6 / Mo/Fe/MgO / Ar / 950 / S[10]
MWCNTs(a) / C7H8 / (C2H5)3B / FeCp2 / Ar / 860 / S[11]
MWCNTs(a) / C2H2 / (CH3O)3B / Fe/Co/CaCO3 / N2 / 700-900 / S[12]
MWCNTs(a) / C2H2 / (CH3O)3B / Fe/Co/CaCO3 / N2 / 750 / S[13]
MWCNTs(b) / C / B / Ni/Y / He / S[14]
CNTs(c) / CNTs / B / Vacuum / 1050 / S[15]
MWCNTs(c) / MWCNTs / B / Ar / 2200-2300 / S[16]
MWCNTs(c) / MWCNTs / H3BO3 / Vacuum / 1400-2000 / S[17]
CNTs(d) / CNTs / B2O3 / Ar / 1100 / S[18]
SWCNTs(d) / SWCNTs / B2O3 / Vacuum / 1150 / S[19]
SWCNTs(d) / SWCNTs / B2O3 / N2 / 1250-1350 / S[20]
MWCNTs(e) / MWCNTs / B / Vacuum / 1400-1800 / S[21]
SWCNTs(f) / Graphite / Ni/Co/B / Ar/N2 / 1175 / S[22]

Fig. S1 TEM micrographs of B-MWCNTs composite film

Fig. S2 EDX spectrum recorded for B-MWCNTs composite film

Fig. S3 EDX spectrum recorded for B-MWCNTs composite film

Fig. S4 EDX spectrum recorded for B-MWCNTs composite film

Fig. S5 EDX spectrum recorded for B-MWCNTs composite film

Table S2 Anodic peak potential (Epox),(a) cathodic peak potential (Epred),(a) half-wave potential (E1/2),(a) (b) anodic and cathodic peak potential separation (ΔEp),(c) anodic peak current density (ipox), anodic and cathodic peak current ratio (ipox/ipred), heterogeneous electron-transfer rate constant (ks),(d) and charge-transfer resistance (Rct)(e) for various concentrations of [Fe(CN)6]3-/4- (1.0 M KCl) on B-MWCNTs composite film at the scan rate of 0.02 V∙s-1

Parameters / Concentration / mM
0.032 / 0.062 / 0.091 / 0.143 / 0.167 / 0.211
Epox / V / 0.305 / 0.309 / 0.317 / 0.322 / 0.326 / 0.329
Epred / V / 0.228 / 0.222 / 0.219 / 0.216 / 0.212 / 0.208
E1/2 / V / 0.267 / 0.266 / 0.268 / 0.269 / 0.269 / 0.269
ΔEpobs / V / 0.077 / 0.087 / 0.098 / 0.106 / 0.114 / 0.121
ΔEpcorr / V / 0.063 / 0.068 / 0.071 / 0.067 / 0.068 / 0.065
ipox / µA·cm-2 / 14.8 / 20.7 / 29.4 / 42.3 / 49.6 / 60.8
(ipox/ipred) / A / 1.03 / 1.09 / 1.07 / 1.05 / 1.05 / 1.03
ks / 10-3 cm·s-1 / 29.4 / 18.7 / 14.5 / 20.4 / 18.7 / 24.4
Rct / Ω / 17 / 19 / 20 / 20 / 21 / 23

(a)All potentials are reported with respect to the Ag/AgCl (KCl sat.) reference electrode; (b)The E1/2 values were determined as the average values of Epox and Epred; (c)“Observed” ΔEpobs and “corrected” ΔEpcorr values; (d)The ks values were determined from electrochemical absolute rate relation: ψ=(Do/DR)a/2ks(nπFvDo/RT)-1/2, where ψ is kinetic parameter, a the charge transfer coefficient (a≈0.5), Do, DR the diffusion coefficients of oxidized and reduced species, respectively (Do≈DR), and n the number of electrons involved in the redox reaction (n=1) [S[23]]; (e)The Rct values were determined using the equivalent electrical circuit (Rs+(Cdl/(Rct+Zw))) (software Thales, version 4.15)

Fig. S6 (a) CVs recorded for 0.032 mM [Fe(CN)6]3-/4- (1.0 M KCl) on B-MWCNTs composite film at various scan rates. The CVs from inner to outer correspond to scan rates: 0.02 V∙s-1 (v1), 0.05 V∙s-1 (v2), and 0.10 V∙s-1 (v3); (b) Effect of square root of scan rate on oxidation and reduction peak current densities of [Fe(CN)6]3-/4- (1.0 M KCl) on B-MWCNTs composite film

Fig. S7 (a) Variation of anodic and cathodic peak potential separation (“observed” ΔEp values) with the peak current for oxidation of [Fe(CN)6]3-/4- (1.0 M KCl) on B-MWCNTs composite film in the concentration range of 0.032-0.211 mM; (b) Variation of anodic and cathodic peak potential separation (“corrected” ΔEp values) with the concentration of [Fe(CN)6]3-/4- (1.0 M KCl) in the concentration range of 0.032-0.211 mM

Fig. S8 (a) EIS spectra recorded for various concentrations of [Fe(CN)6]3-/4- (1.0 M KCl) on B-MWCNTs composite film at the half-wave potential of studied redox system (+0.270 V vs. Ag/AgCl) in the frequency range from 0.1 Hz to 100 kHz. The EIS spectra correspond to concentrations: 0.032 mM (□), 0.062 mM (○), 0.091 mM (∆), 0.143 mM (Ñ), 0.167 mM (+), and 0.211 mM (×); (b) Zoom of EIS spectra in high frequency region

Fig. S9 Equivalent electrical circuit (Rs+(Cdl/(Rct+Zw))) used for simulation of EIS spectra recorded for [Fe(CN)6]3-/4- (1.0 M KCl) on B-MWCNTs composite film in the frequency range from 0.1 Hz to 100 kHz (software Thales, version 4.15)

Fig. S10 Representative CVs recorded for various concentrations of DA (a) and UA (b) on B-MWCNTs composite film at the scan rate of 0.02 V∙s-1 (phosphate buffer solution, pH 7.0). The CVs from inner to outer correspond to concentrations: 0.062 mM (c1), 0.143 mM (c2), and 0.250 mM (c3)

Fig. S11 Effect of concentration on peak current density for oxidation of DA (a) and UA (b) on B-MWCNTs composite film (phosphate buffer solution, pH 7.0)

Fig. S12 CVs recorded for various concentration ratios of AA/UA binary mixtures on B-MWCNTs composite film at the scan rate of 0.02 V∙s-1 (phosphate buffer solution, pH 7.0). The CVs correspond to following AA:UA ratios: 0:1 (a); 1:1 (b); 10:1 (c); and 100:1 (d)

Fig. S13 CVs recorded for various concentration ratios of DA/UA binary mixtures on B-MWCNTs composite film at the scan rate of 0.02 V∙s-1 (phosphate buffer solution, pH 7.0). The CVs correspond to following DA:UA ratios: 0:1 (a); 1:1 (b); 10:1 (c); and 100:1 (d)

Fig. S14 Histograms showing the lower limit of detection of pristine MWCNTs (I) [S[24], S[25]], P-MWCNTs (II) [S[26]], B-MWCNTs (III), and N-MWCNTs (IV) [S[27], S24] composite films towards oxidation of DA (a) and UA (b) (phosphate buffer solution, pH 7.0)

Table S3 Comprehensive comparison of low limits of detection (LOD) (S/N=3) estimated for fabricated B-MWCNTs film towards oxidation of DA, UA, and AA (phosphate buffer solution, pH 7.0) with those reported in literature for other composite films

Electrodes / LOD / μM
DA / UA / AA
B-MWCNTs / 0.11(a) / 0.65(a) / 1.21(a)
SWCNTs/PGA / 0.38(b)
Au/L-Cys / 2(c) / 11(c)
GC/In3C / 1.70(d) / 4.99(d)
CP/MWCNTs/IL / 0.03(e) / 0.15(e) / 0.20(e)
HNP/PtCu / 2.8(f) / 5.7(f) / 17.5(f)
GC/MWCNTs/MGF / 0.06(g) / 0.93(g) / 18.28(g)
GO/PAMAM/MWCNTs/Au / 3.3(h) / 0.33(h) / 6.7(h)
MWCNTs/CP/SnO2 / 0.03(i) / 1.0(i) / 50(i)
MWCNTs/PTy / 0.02(j) / 0.30(j) / 2.0(j)
GE/MWCNTs/PSS / 0.3(k) / 0.8(k) / 0.5(k)
CP/Pd/CNFs / 0.2(l) / 0.7(l) / 15(l)
GC/HCNTs / 0.80(m) / 1.5(m) / 0.92(m)
GC/OMC/Nafion / 0.5(n) / 4.0(n) / 20(n)
GC/Trp/Gr / 0.29(o) / 1.24(o) / 10.09(o)

(a)Boron-doped MWCNTs (this work); (b)Single-walled carbon nanotubes modified with poly-glutamic acid [S[28]]; (c)Gold electrode modified with L-cysteine [S[29]]; (d)Glassy carbon modified with indole-3-carboxaldehyde [S[30]]; (e)Carbon paste electrode modified with MWCNTs and an ionic liquid [S[31]]; (f)Hierarchical nanoporous platinum-copper alloy [S[32]]; (g)Glassy carbon modified with MWCNTs bridged mesocellular graphene foam [S[33]]; (h)Reduced graphene oxide functionalized by poly(amido-amine), MWCNTs, and gold nanoparticles [S[34]]; (i)Carbon paste electrode modified with MWCNTs and SnO2 nanoparticles [S[35]]; (j)MWCNTs functionalized with poly (tyrosine)/carboxyl [S[36]]; (k)Graphite electrode modified with MWCNTs and polystyrene sulphonate [S[37]]; (l)Carbon paste electrode modified with palladium nanoparticles and carbon nanofibers [S[38]]; (m)Glassy carbon electrode modified with helical carbon nanotubes [S[39]]; (n)Glassy carbon modified with ordered mesoporous carbon and Nafion [S[40]]; (o)Glassy carbon modified with tryptophan-functionalized graphene nanocomposite [S[41]]

References

17

[1]N.G. Tsierkezos (*) • U. Ritter • Y. Nugraha Thaha • P. Scharff

Department of Chemistry, Institute of Chemistry and Biotechnology,Ilmenau University of Technology, Weimarer Straße 25, 98693 Ilmenau, Germany , E-Mail:

[2]P. Szroeder

Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland

Clive Downing

Advanced Microscopy Laboratory, CRANN, Trinity College Dublin

Dublin 2, Ireland

[1]S. Satishkumar BC, Govindaraj A, Harikumar KR, Zhang JP, Cheetham AK, Rao CNR (1999) Boron-carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures. Chem Phys Lett 300:473

[2]S. Ishii S, Watanabe T, Ueda S, Tsuda S, Yamaguchi T, Takano Y (2008) Resistivity reduction of boron-doped multi-walled carbon nanotubes synthesized from a methanol solution containing boric acid. Appl Phys Lett 92:202116

[3]S. Handuja S, Srivastava P, Vankar VD (2009) Structural modification in carbon nanotubes by boron incorporation. Nanoscale Res Lett 4:789

[4]S. Ayala P, Plank W, Grüneis A, Kauppinen EI, Rümmeli MH, Kuzmany H, Pichler T (2008) A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 18:5676

[5]S. Koós AA, Dillon F, Obraztsova EA, Crossley A, Grobert N (2010) Comparison of structural changes in nitrogen and boron-doped multi-walled carbon manotubes. Carbon 48:3033

[6]S. Mondal KC, Coville NJ, Witcomb MJ, Tejral G, Havel J (2007) Boron mediated synthesis of multi-walled carbon nanotubes by chemical vapor deposition. Chem Phys Lett 437:87

[7]S. Sharma RB, Late DJ, Joag DS, Govindaraj A, Rao CNR (2006) Field emission properties of boron and nitrogen doped carbon nanotubes. Chem Phys Lett 428:102

[8]S. Ceragioli HJ, Peterlevitz AC, Quispe JCR, Larena A, Pasquetto MP, Sampaio MA, Baranauskas V (2008) Synthesis and characterization of boron-doped carbon nanotubes. J Phys Conf Ser 100:52029

[9]S. Nicholls RJ, Aslam Z, Sarahan MC, Koós A, Yates JR, Nellist PD, Grobert N (2012) Boron-mediated nanotube morphologies. ACS Nano 6:7800

[10]S. Panchakarla LS, Govindaraj A, Rao CNR (2007) Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1:494

[11]S. Hashim DP, Narayanan NT, Romo-Herrera JM, Cullen DA, Hahm MG, Lezzi P, Suttle JR, Kelkhoff D, Muñoz-Sandoval E, Ganguli S, Roy AK, Smith DJ, Vajtai R, Sumpter BG, Meunier V, Terrones H, Terrones M, Ajayan PM (2012) Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2:363

[12]S. Mamo MA, Sustaita AO, Tetana ZN, Coville NJ, Hümmelgen IA (2013) Undoped, nitrogen-doped and boron-doped multi-walled carbon nanotube/poly(vinyl alcohol) composite as active layer in simple hydrostatic pressure sensors. J Mater Sci Mater Electron 24:3995

[13]S. Mamo MA, Sustaita AO, Tetana ZN, Coville NJ, Hümmelgen IA (2013) Nitrogen-doped, boron-doped and undoped multi-walled carbon nanotube/polymer composites in WORM memory devices. Nanotechnology 24:125203

[14]S. Czerw R, Chiu PW, Choi YM, Lee DS, Carroll DL, Roth S, Park YW (2002) Substitutional boron-doping of carbon nanotubes. Curr Appl Phys 2:473

[15]S. Qi J, Lan Q, Jing Y, Xiaotong Z, Yong Z (2007) Effects of boron-doping on the morphology and magnetic property of carbon nanotubes. Front Mater Sci China 1:379

[16]S. Shiraishi S, Kibe M, Yokoyama T, Kurihara H, Patel N, Oya1 A, Kaburagi Y, Hishiyama Y (2006) Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect. Appl Phys A 82:585

[17]S. Kim YA, Aoki S, Fujisawa K, Ko YI, Yang KS, Yang CM, Jung YC, Hayashi T, Endo M, Terrones M, Dresselhaus MS (2014) Defect-assisted heavily and substitutionally boron-doped thin multi-walled carbon nanotubes using high-temperature thermal diffusion. J Phys Chem C 118:4454

[18]S. Han W, Bando Y, Kurashima K, Sato T (1999) Boron-doped carbon nanotubes prepared through a substitution reaction. Chem Phys Lett 299:368

[19]S. Borowiak-Palen E, Pichler T, Fuentes GG, Graff A, Kalenczuk RJ, Knupfer M, Fink J (2003) Efficient production of B-substituted single-wall carbon nanotubes. Chem Phys Lett 378:516

[20]S. Golberg D, Bando Y, Han W, Kurashima K, Sato T (1999) Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem Phys Lett 308:337

[21]S. Sato Y, Nishizaka H, Motomiya K, Yamamoto G, Okubo A, Kimura H, Ishikuro M, Wagatsuma K, Hashida T, Tohji K (2011) Boron-assisted transformation to rod-like graphitic carbons from multi-walled carbon nanotubes in boron-mixed multi-walled carbon nanotube solids. ACS Appl Mater Interfaces 3:2431

[22]S. Blackburn JL, Yan Y, Engtrakul C, Parilla PA, Jones K, Gennett T, Dillon AC, Heben MJ (2006) Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique. Chem Mater 18:2558

[23]S. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706

[24]S. Tsierkezos NG, Ritter R (2012) Oxidation of dopamine on multi-walled carbon nanotubes. J Solid State Electrochem 16:2217

[25]S. Kamyabi MA, Narimani O, Monfared HH (2011) Electroless deposition of bis(4’-(4-pyridyl)-2,2’:6’,2”-terpyridine)iron(II) thiocyanate complex onto carbon nanotubes modified

glassy carbon electrode: application to simultaneous determination of ascorbic acid, dopamine

and uric acid. J Braz Chem Soc 22:468

[26]S. Tsierkezos NG, Ritter U, Nugraha Thaha Y, Downing C, Szroeder P (2015) Synthesis, characterization, and electrochemical application of phosphorus-doped multi-walled carbon nanotubes. J Solid State Electrochem 19:891