SupplementalTable S1: Plasmids

Plasmid / Genotype
pAH54 / spec amp (A gift from A. Camp and R. Losick)
pAC225 / cat amp (A gift from A. Camp and R. Losick)
pAP9 / thrC::Physpank-smiA mls
pDG646 / mls amp (Guérout-Fleury et al., 1995)
pDG780 / kan amp (Guérout-Fleury et al., 1995)
pDG1515 / tet amp (Guérout-Fleury et al., 1995)
pDG1664 / thrC::mls amp (Guérout-Fleury et al., 1995)
pDP150 / thrC::Physpank mls amp (Kearns and Losick, 2003)
pDP224 / thrC::PlytF-CFP mls amp
pDP291 / thrC::PlonA-lonA mls amp
pDP307 / oriBsTsΔlonA amp mls
pDR111 / amyE::Physpank spec (Ben Yehuda et al., 2003)
pKB67 / amyE::Physpank-lytC spec amp
pKB68 / amyE::Physpank-lytD spec amp
pKB69 / amyE::Physpank-lytF spec amp
pKB104 / thrC::PsmiA-smiA mls amp
pKB105 / thrC::PfliD-smiA mls amp
pKB117 / oriBsTsΔsmiA amp mls
pLC20 / lacA::Phag-YFP tet amp
pMiniMAD / oriBsTs amp mls (Patrick and Kearns, 2008)
pNC018 / lacA::tet (A gift from N. Campo and D. Rudner)

Supplemental Table S2: Primers

Primer / Sequence
61 / AGTATTCCTTCAGAATCAACGGGGGAAT
62 / ATTATGTCTTTTGCGCAGTCGGCTTAGTCTCTTTTTCATTCCTTCTCCTCTTT
63 / CATTCAATTTTGAGGGTTGCCAGAAAAAACTTAGAAAGTTGCAAATAGGCT
64 / TTGATATGAAGAATAGACAGTTGGCA
380 / CTCCTGAATTCTTATCGCGGAAAATAAACGAAGCGA
381 / AGGAGGCTAGCGAATATGTTGTTAAGGCACGTCCTT
494 / TGAGAAAAGTGCTCGCAAGCATGAT
495 / CAATTCGCCCTATAGTGAGTCGTTGTCAGCCCTGCTGCTAATTTCTTT
496 / CCAGCTTTTGTTCCCTTTAGTGAGTGGAAACAGCGCTATCTCGGTGC
497 / TGTCTACGCCAATGTCATTCCGAAG
562 / AGGAGGCTAGCTACATAAGGAGGAACTACTATGAGTAAAGGAGAAGAACTTTTCAC
563 / CTCCTGGATCCTTATTTGTATAGTTCATCCATGCCATG
633 / CTCCTGGATCCTTACTTATAAAGTTCGTCC
634 / AGGAGGCATGCAAGCTTACATAAGGAGGAACTACTA
749 / TTAGAGTTATTAATGGAATTGCTGATNNNNNNNNNNN
766 / GGGAATCATTTGAAGGTTGGT
917 / AGGAGGAATTCCTACGTAGAAACGATACGCGGAC
918 / CTCCTGCATGCAATGATTTTGCATTTGCTGTTTCTTTT
1059 / AGGAGGTCGACTGATTATTTTAGGATATAACGCCATTT
1060 / CTCCTGCATGCCAAATCTGTGATTAGATTTGTCTCTTT
1061 / AGGAGGTCGACACTAGTTTTATATACTCATAGAATAAGA
1062 / CTCCTGCATGCTACAGCCTATTTGCAACTTTCTAAGT
1063 / AGGAGGTCGACAAAAAAGAAACAGCAAATGCAAAATCA
1064 / CTCCTGCATGCCGTTAAGGCCGCACAGTTTCTG
1185 / GAATTAGTCTTGATGGAAAGCAGTAT
1186 / CAATTCGCCCTATAGTGAGTCGTAAGCTGTTGGCACAAAAAGTATGAG
1187 / CCAGCTTTTGTTCCCTTTAGTGAGCATCAGATGCAAGTAAATTGAAGCAA
1188 / CATGATTTGTTTTGTAATACTTGGCAT
1360 / AGGAGGAATTCTACACAAAATTCCTATTGACAATAC
1361 / CTCCTGGATCCGATCACGATTTCTGACTTTGTGACT
1366 / AGGAGAAGCTTCCTTATAACAACATTACGATTGACG
1367 / CTCCTGCTAGCTGTCGAATTTTGTTTGTATTTGCTCTGT
1555 / AGGAGGAATTCAGTATTGAAGCTAAAGCTGGGAA
1556 / CTCCTGTCGACATCTTCAATGCTCTTCAAGGCACTC
1557 / AGGAGGTCGACCCCTTTTTAATCAATTAGGCGTGTG
1558 / CTCCTGGATCCTATCTATTCAGCGTACGTTTTGTTG
1559 / AGGAGGGATCCTTAACAACTTAAGCGCTTCTGGTGA
1510 / CTCCTAAGCTTATGCCCCAATCTATCGTTTATATCG
1444 / AGGAGAAGCTTTAACAACATTACGATTGACGGCACA
1508 / CTCCTGAATTCTTTTATTAAGGATATGTATCTATTTCTC
1609 / AGGAGGGATCCAAGAAGGACTGGATCTTTTGACCA
1610 / CTCCTCTCGAGGAGGAGCGGGATGCTGCGTTT
1611 / AGGAGCTCGAGCTGACATTTATATTGGCGTCCCAC
1612 / CTCCTGAATTCCGGTTTGCTTCTCTTCGGGATCGGT

Supplemental Movie Legends

Movie S1: Streaming real-time video of wild type 3610 cells in LB broth.

Movie S2: Streaming real-time video of lytC lytD DS3821 cells in LB broth.

Movie S3: Streaming real-time video of lytC lytD lonA DS5351 cells in LB broth.

Movie S4: Streaming real-time video of lytC lytD smiA DS5109 cells in LB broth.
Supplemental Figure Legends

Figure S1. Swimming and swarming motility of autolysin mutants. Swim assays were conducted on 0.3% agar LB plates. Each strain was mutated for the srfAA gene and thus surfactin biosynthesis to prevent swarming on the surface that would obscure swimming through the agar. The following strains were used to generate the swim plate series: DS1122, DS5268, DS5269, DS5270, DS5271, DS5272, DS5273, and DS5274. Swarm assays were conducted on 0.7% agar LB plates and in this case, strains were not mutated for srfAA. The following strains were used to generate the swim plate series: 3610, DS108, DS1447, DS1499, DS3819, DS3820, DS3821, DS3822. Each plate was centrally inoculated and incubated for 18 hours at 37°C.

Figure S2. SmiA is conserved in species closely related to B. subtilis. A pileup and boxshade analysis of similarity of SmiA proteins predicted to be encoded by Bacillus subtilis 3610 (Bsu), Bacillus licheniformis 14580 (Bli), Bacillus amyloliquefaciens FZB42 (Bam), and Bacillus pumilis SAFR-032 (Bpu).

Figure S3. The smiA mutant was unable to be complemented when smiA was expressed from the PsmiA or PfliD promoter region. Quantitative swarm expansion assays for the lytC lytDsmiA triple mutant complemented with either PsmiA-smiA or PfliD-smiA complementation constructs (Fig. 6D). Each point is the average of measurements from three experiments. The following strains were used to generate this figure: lytC lytD (DS3961), lytC lytD ΔsmiA (DS4988), lytC lytD ΔsmiAPsmiA-smiA(DS4995), and lytC lytD ΔsmiAPfliD-smiA (DS4996).

Figure S4. Mutations in smiA and lonA improve swarming motility in cells doubly mutated for autolysins. Quantitative swarm expansion assays for A) lytD lytF (DS1499), smiA lytD lytF(DS5127), lonA lytD lytF (DS5303); B) lytC lytF (DS3820), smiA lytC lytF (DS5125), lonA lytC lytF (DS5302); and C) lytC lytD lytF (DS3822), smiA lytC lytD lytF (DS5126), lonA lytC lytD lytF (DS5352). Each point is the average of measurements from three experiments.