Electronic Supplementary Material
Characteristics of dynamic membrane filtration:
Structure, operation mechanisms and cost analysis
Yalei Zhang, Yangying Zhao, Huaqiang Chu *, Bingzhi Dong, XuefeiZhou
State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Aquatic Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
*Corresponding author phone: +86-21-65985811; fax: +86-21-65985811;
e-mail:
Table S1. Physical treatment performance of dynamic membrane reactors
Membraning Material / Treated substance / Flux / Retention ratio(%) / ReferenceTiO2 / 4-chlorophenol / 125 L/m2.h / 33-92 / [1]
Ca-oleate,CdS,ZrO2 / Bovine serum albumin / N.A. / 80 / [2]
Clay mineral / Synthetic Co(Ⅱ)ions / N.A. / < 98 / [3]
PVA
PEG / Synthetic dye solution / 260-440 L/m2.h
76-84 L/m2.h / 28-46
65-77 / [4]
Kaolin / CH3COONa polymer fluid / N.A. / ≈100 / [5]
PVA / Protein solution / N.A. / 83-99 / [6]
Zr-PAA / Sodium nitrate feed solution / 50 L/m2.h / 98 / [7]
Ovalbumin
γ-globulin / Protein (ovalbumin) solution / N.A. / >80 / [8]
Zr(IV), Al(III) and Fe(III) / Colloid solutions / N.A. / N.A. / [9]
Hydrous Zr(IV) colloids / Glucose/bovine serum albumin solution / 16.5-34.2 L/m2.h.bar / >90 / [10]
Kaolin/MnO2 / Oily wastewater / 120.1-153.2 L/m2.h / >99 / [11]
Zr-dextran / Hemoglobin (Hb) solutions / 7.7 L/m2.h.bar / 70-100 / [12]
Fe(OH)3/MnO2·2H2O / Synthetic oily water / 100 L/m2.h / >98 / [13]
Non-coagulating
/Hydrophylized coagulating polymers / Sodium sulphate solutions(Na2SO4) / 21.6-23 L/m2.h / 75-98 / [14]
Hydrous Zr colloids / Egg white protein solution / N.A. / 80-95 / [15]
Zr-PAA / Ovalbumin solution / 10-50 L/m2.h.bar / >95 / [16]
Solid particles / Pineapple juice / 6.37 m3/m2.h / 84-87 / [17]
Note: N.A., Not available.
Table S2. Biological treatment performance of dynamic membrane bioreactors for municipal wastewater treatment
Membraning Material / Oxygen condition / Flux( L/m2.h) / Treatment efficiency / ReferencePoly-tetrafluoroethylene / Anaerobic / 4-12 / < 30mg/L (effluent COD)
< 10mg/L (effluent SS) / [18]
Activated sludge / Anaerobic / 0.5-3 / >99% (SS) / [19]
Activated sludge / Aerobic / 14.8-33.3 / 84.2%(COD)
98.03%(NH3-N) / [20]
Bio-diatomite / Aerobic / 8.6-130 / 8.1-28.1 mg/L (effluent COD)
0.08-0.53 mg/L (effluent NH3-N)
100%(SS) / [21]
Activated sludge / Anaerobic / 5 / 77.5±29.5 mg/L (effluent COD)
27.6±12.5 mg/L (effluent NH3-N) / [22]
Activated sludge / Aerobic / 20.8-31.6 / 5 mg/L (effluent BOD)
1.5mg/L (effluent SS)
80%(TN) / [23]
PAC / Aerobic / 417.6-543.6 / 4-5.76NTU(effluent turbidity) / [24]
Activated sludge / Anaerobic/Oxic / 16.7 / 91.6%(COD)
93.5%(SS)
66%(TN) / [25]
Activated sludge / Anaerobic / 65 / 57.3%±6.1%(COD)
68-250 mg/L (effluent SS) / [26]
Activated sludge / Aerobic / 150 / 24-45mg/L (effluent COD)
< 5 mg/L (effluent BOD)
< 12mg/L (effluent SS) / [27]
PAC / Aerobic / 18.6 / 97.09%(COD)
94.16%(NH3-N) / [28]
Table S3. Materials and formation conditions of different dynamic membrane applications
Membraning Material / Support Material(μm) / Treated substance / Formation Type / ReferenceHydrous Zr(IV) Oxide-PAA / Stainless steel tube / Industrial effluents / Pre-coated / [29]
Zr(IV), Al(III) and Fe(III) / Ceramic tube(0.5-1.0) / Colloid solutions / Pre-coated / [9]
Ceramic tube / Sugar solution / Self-forming / [30]
Ca-oleate,CdS,ZrO2 / Polymeric membrane(0.2) / Bovine serum albumin / Pre-coated / [2]
Hydrous Zr(IV) Oxide / Ceramic tube(0.5) / Dextran solution / Pre-coated / [31]
Ovalbumin
γ-globulin / Ceramic tube(0.05) / protein (ovalbumin) solution / Pre-coated / [8]
Woven fabric tubes / Municipal sludge / Self-forming / [32]
Zr-PAA / Ceramic/metal mesh MF / Sodium nitrate feed solution / Pre-coated / [7]
MnO2
CaCO3, FeCl3, and NaAlO2 / Polyester yarn woven fabric(20-40) / Effluent of pre-treated municipal wastewater / Pre-coated / [33]
[34]
Solid particles / Monolith alumina MF/UF membranes(0.1/0.01) / Pineapple juice / Self-forming / [17]
Hydrous Zr(IV) colloids / Ceramic tube(0.2) / Glucose and bovine serum albumin solution / Pre-coated / [10]
Kaolin / Stainless steel mesh(4.7) / CH3COONa polymer fluid / Pre-coated / [5]
Zr-PAA / Polypropylene and polyethylene non-woven fabrics / Ovalbumin solution / Pre-coated / [16]
Ceramic tube(0.2) / Immobilize α-Amylase / Pre-coated / [35]
Zr-dextran / Steinless steel tube(0.5-5) / Hemoglobin (Hb) solutions / Pre-coated / [12]
MnO2 / Polyethylene (PE) tubes(5-20) / Wastewater from diatomaceous earth;
Oil-refining wastewater / Pre-coated / [36]
Non-coagulating/
Hydrophylized coagulating polymers / Cellulose acetate RO membrane / Sodium sulphate solutions(Na2SO4) / Pre-coated / [14]
PVA / Non-woven fabric
(PAN PVDF Nylon) / Protein solution / Pre-coated / [6]
Hydrous Zr colloids / Non-woven fabric(tens)
polysulfone MF membrane(3) / Egg white protein solution / Pre-coated / [15]
Nylon mesh(100) / Synthetic wastewater / Self-forming / [37]
[23]
Dacron mesh(100) / Municipal wastewater / Self-forming / [20]
Kaolin, diatomite and Fuller’s earth / woven polyester tubes / Secondary effluent / Pre-coated / [38]
Polymethyl methacrylate (PMMA) particles / Polyvinylidene fluoride(PVDF) membrane(0.1) / Dextran macromolecules solution / Self-forming / [39]
polypropylene non-woven fabric / Municipal wastewater / Self-forming / [40]
[25]
Clay mineral / UF/RO / Synthetic Co(Ⅱ)ions / Pre-coated / [3]
Mesh(100-500) / Municipal sludge / Self-forming / [41]
Woven nylon fabric(30) / Synthetic municipal wastewater / Self-forming / [27]
PAC / Hollow fiber(0.2) / Synthetic wastewater / Pre-coated / [42]
Non-woven fabric / Synthetic Municipal / Self-forming / [43]
Fe(OH)3/MnO2·2H2O
/Mg(OH)2 / Al2O3 ceramic tube(5) / Synthetic oily water / Pre-coated / [13]
[44]
PVA/PEG / UF / Synthetic dye solution / Pre-coated / [4]
Filter-cloth / Industrial effluents / Self-forming / [45]
Ceramic tube(2) / Caprolactam wastewater / Pre-coated / [46]
FeCl3 / UF/NF / Raw water / Pre-coated / [47]
Mesh(100) / Municipal sludge / Self-forming / [48]
PAC / Terylene filter cloth(56) / Municipal wastewater / Pre-coated / [28]
Bio-diatomite / Stainless steel mesh(74) / Municipal wastewater / Pre-coated / [21]
[49]
[50]
Non-woven
Mesh / Synthetic municipal wastewater / Self-forming / [19]
Municipal activated sludge / Nylon mesh filter(30) / Distillery wastewater / Self-forming / [51]
polypropylene non-woven fabric / activated sludge mixedliquor / Self-forming / [52]
Non-woven fabric(0.64) / Effluent of municipal / Self-forming / [22]
TiO2 / Non-woven(2) / 4-chlorophenol / Pre-coated / [1]
Woven fabrics / Municipal raw sewage / Self-forming / [53]
PAC / Dacron mesh(150) / Raw wastewater / Pre-coated / [24]
Woven nylon mesh / Municipal wastewater / Self-forming / [54]
Bio-diatomite
PAC-Diatomite / Stainless steel mesh(74) / Micro-polluted / Pre-coated / [55]
[56]
[57]
Non-woven fabric(100) / Household wastewater / Self-forming / [58]
Dacron mesh(61) / Municipal wastewater / Self-forming / [26]
[59]
Kaolin/MnO2 / Al2O3 ceramic tube(1) / Oily wastewater / Pre-coated / [11]
Non-woven fabric / Synthetic wastewater / Self-forming / [60]
Diatomite / Stainless steel mesh(80) / Slightly polluted surface water / Pre-coated / [61]
Table S4. Cost analysis between MBR systems and DMBR systems
for municipal wastewater treatment
MBR systems / DMBR systemsMembrane cost (€/m2) / 50-150 [62] / 1 [63]
Permeate flux (L/m2.h) / 10-25 [64] / 15-150 [65]
Energy consumption
(kWh/m3 permeate flux) / 0.8-1 [66] / 0.4-0.6 (converted based on [42, 53, 67])
Membrane cleaning / Chemical cleaning / Physical cleaning
References:
1. Horng RY, Huang CP, Chang MC et al. (2009) Application of TiO2 photocatalytic oxidation and non-woven membrane filtration hybrid system for degradation of 4-chlorophenol. Desalination 245: 169-182
2. Turkson AK, Mikhlin JA, Weber ME (1989) Dynamic membranes. I. Determination of optimum formation conditions and electrofiltration of bovine serum albumin with a rotating module. Sep Sci Technol 24: 1261-1291
3. Kryvoruchko AP, Atamanenko ID, Yurlova LY (2004) Concentration/purification of Co(ii) ions by reverse osmosis and ultrafiltration combined with sorption on clay mineral montmorillonite and cation-exchange resin ku-2-8n. J Membr Sci 228: 77-81
4. de Amorim MTP, Ramos IRA (2006) Control of irreversible fouling by application of dynamic membranes. Desalination 192: 63-67
5. Wang JY, Chou KS, Lee CJ (1998) Dead-end flow filtration of solid suspension in polymer fluid through an active kaolin dynamic membrane. Sep Sci Technol 33: 2513-2529
6. Na L, Liu ZZ, Xu SG (2000) Dynamically formed poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics. J Membr Sci 169: 17-28
7. Correia VM, Judd SJ (1996) Effect of salt concentration on the structure of low-pressure dynamically-formed membranes. J Membr Sci 116: 117-127
8. Matsuyama H, Shimomura T, Teramoto M (1994) Formation and characteristics of dynamic membrane for ultrafiltration of protein in binary protein system. J Membr Sci 92: 107-115
9. Nakao SI, Nomura T, Kimura S et al. (1986) Formation and characteristics of inorganic dynamic membranes for ultrafiltration. J Chem Eng Japan 19: 221-226
10. Chen CC, Chiang BH (1998) Formation and characteristics of zirconium ultrafiltration dynamic membranes of various pore sizes. J Membr Sci 143: 65-73
11. Yang T, Ma ZF, Yang QY (2011) Formation and performance of kaolin/mno2 bi-layer composite dynamic membrane for oily wastewater treatment: Effect of solution conditions. Desalination 270: 50-56
12. Wang JY, Liu MC, Lee CJ et al. (1999) Formation of dextran-zr dynamic membrane and study on concentration of protein hemoglobin solution. J Membr Sci 162: 45-55
13. Zhao YJ, Tan Y, Wong FSet al. (2005) Formation of dynamic membranes for oily water separation by crossflow filtration. Sep Purif Technol 44: 212-220
14. Knyazkova TV, Kavitskaya AA (2000) Improved performance of reverse osmosis with dynamic layers onto membranes in separation of concentrated salt solutions. Desalination 131: 129-136
15. Rumyantsev M, Shauly A, Yiantsios SG et al. (2000) Parameters affecting the properties of dynamic membranes formed by zr hydroxide colloids. Desalination 131: 189-200
16. Altman M, Semiat R, Hasson D (1999) Removal of organic foulants from feed waters by dynamic membranes. Desalination 125: 65-75
17. Jiraratananon R, Uttapap D, Tangamornsuksun C (1997) Self-forming dynamic membrane for ultrafiltration of pineapple juice. J Membr Sci 129: 135-143
18. Ho JH, Khanal SK, Sung S (2007) Anaerobic membrane bioreactor for treatment of synthetic municipal wastewater at ambient temperature. Water Sci Technol 55: 79-86
19. Jeison D, Diaz I, van Lier JB (2008) Anaerobic membrane bioreactors: Are membranes really necessary? Electron J Biotechnol 11: 1-2
20. Fan B, Huang X (2002) Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Environ Sci Technol 36: 5245-5251
21. Chu HQ, Cao DW, Jin W et al. (2008) Characteristics of bio-diatomite dynamic membrane process for municipal wastewater treatment. J Membr Sci 325: 271-276
22. An Y, Wang ZW, Wu ZC et al. (2009) Characterization of membrane foulants in an anaerobic non-woven fabric membrane bioreactor for municipal wastewater treatment. Chem Eng J 155: 709-715
23. Kiso Y, Jung YJ, Ichinari T et al. (2000) Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material. Water Res 34: 4143-4150
24. Xu CH, Gao BY, Cao BC et al. (2009) Dynamic membrane formation mechanisms of a combined coagulation dynamic membrane process in treating polluted river water at a constant pressure.
25. Seo GT, Moon BH, Lee TS et al. (2003) Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation. Water Sci Technol 47: 133-138
26. Zhang XY, Wang ZW, Wu ZC et al. (2010) Formation of dynamic membrane in an anaerobic membrane bioreactor for municipal wastewater treatment. Chem Eng J 165: 175-183
27. Fuchs W, Resch C, Kernstock M et al. (2005) Influence of operational conditions on the performance of a mesh filter activated sludge process. Water Res 39: 803-810
28. Ye MS, Zhang HM, Wei QF et al. (2006) Study on the suitable thickness of a pac-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Desalination 194: 108-120
29. Groves GR, Buckley CA, Cox JM et al. (1983) Dynamic membrane ultrafiltration and hyperfiltration for the treatment of industrial effluents for water reuse. Desalination 47: 305-312
30. Kishihara S, Tamaki H, Fujii S et al. (1989) Clarification of technical sugar solutions through a dynamic membrane formed on a porous ceramic tube. J Membr Sci 41: 103-114
31. Ohtani T, Nakajima M, Nawa Y et al. (1991) Formation of dynamic uf membrane with fine zr particles. J Membr Sci 64: 273-281
32. Pillay VL, Townsend B, Buckley CA (1994) Improving the performance of anaerobic digesters at wastewater treatment works: The coupled cross-flow microfiltration/digester process. Water Sci Technol 30: 329-337
33. AlMalack MH, Anderson GK (1997) Cleaning techniques of dynamic membranes. Sep Purif Technol 12: 25-33
34. AlMalack MH, Anderson GK (1996) Formation of dynamic membranes with crossflow microfiltration. Journal of Membrane Science 112: 287-296
35.Tien CJ, Chiang BH (1999) Immobilization of alpha-amylase on a zirconium dynamic membrane. Process Biochem 35: 377-383
36. Cai BX, Ye HL, Yu L (2000) Preparation and separation performance of a dynamically formed MnO2 membrane. Desalination 128: 247-256
37. Kiso Y, Jung YJ, Park MS et al. (2005) Coupling of sequencing batch reactor and mesh filtration: Operational parameters and wastewater treatment performance. Water Res 39: 4887-4898
38. Noor M, Ahmadun FR, Mohamed TAet al. (2002) Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater. Desalination 147: 263-268
39. Hwang KJ, Cheng YH (2003) The role of dynamic membrane in cross-flow microfiltration of macromolecules. Sep Sci Technol 38: 779-795
40. Seo GT, Moon BH, Park YM et al. (2007) Filtration characteristics of immersed coarse pore filters in an activated sludge system for domestic wastewater reclamation. Water Sci Technol 55: 51-58
41. Park MS, Kiso Y, Jung YJ et al. (2004) Sludge thickening performance of mesh filtration process. Water Sci Technol 50: 125-133
42. Li YZ, He YL, Liu YH et al. (2005) Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors. Desalination 174: 305-314
43. Wu Y, Huang X, Wen X et al. (2005) Function of dynamic membrane in self-forming dynamic membrane coupled bioreactor. Water Sci Technol 51: 107-114
44. Zhao YJ, Tan Y, Wong FS et al. (2006) Formation of Mg(OH)2 dynamic membranes for oily water separation: Effects of operating conditions. Desalination 191: 344-350
45. Chu LB, Li S (2006) Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment. Sep Purif Technol 51: 173-179
46. Li F, Chen J, Deng C (2006) The kinetics of crossflow dynamic membrane bioreactor. Water SA 32: 199-203
47. Sharp MM, Escobar IC (2006) Effects of dynamic or secondary-layer coagulation on ultrafiltration. Desalination 188: 239-249
48. Wang WH, Jung YJ, Kiso Y et al. (2006) Excess sludge reduction performance of an aerobic sbr process equipped with a submerged mesh filter unit. Process Biochem 41: 745-751
49. Cao DW, Chu HQ, Jin W et al. (2010) Characteristics of the biodiatomite dynamic membrane (cake layer) for municipal wastewater treatment. Desalination 250: 544-547
50. Chu HQ,Dong BZ, Zhang YL et al. (2012) Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification. Water Sci Technol66: 1139-1146
51. Satyawali Y, Balakrishnan M (2008) Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter. Sep Purif Technol 63: 278-286
52. Zhou XH, Shi HC, Cai Q et al. (2008) Function of self-forming dynamic membrane and biokinetic parameters' determination by microelectrode. Water Res 42: 2369-2376
53. Liu HB, Yang CZ, Pu WH et al. (2009) Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor. Chem Eng J 148: 290-295
54. Walker M, Banks CJ, Heaven S (2009) Development of a coarse membrane bioreactor for two-stage anaerobic digestion of biodegradable municipal solid waste. Water Sci Technol 59: 729-735
55.Chu HQ, Cao DW, Dong BZ et al. (2010) Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. Water Res 44: 1573-1579
56. Chu HQ, Dong BZ, Zhang YL et al. (2012) Pollutant removal mechanisms in a bio-diatomite dynamic membrane reactor for micro-polluted surface water purification. Desalination 293: 38-45
57. Chu HQ, Zhang YL, Dong BZ et al. (2012) Pretreatment of micro-polluted surface water with a biologically enhanced pac-diatomite dynamic membrane reactor to produce drinking water. Desalin Water Treat 40: 84-91
58. Ren X, Shon HK, Jang N et al. (2010) Novel membrane bioreactor (mbr) coupled with a nonwoven fabric filter for household wastewater treatment. Water Res 44: 751-760
59.Zhang XY, Wang ZW, Wu ZC et al. (2011) Membrane fouling in an anaerobic dynamic membrane bioreactor (andmbr) for municipal wastewater treatment: Characteristics of membrane foulants and bulk sludge. Process Biochem 46: 1538-1544
60. Liang S, Zhao TT, Zhang J et al. (2012) Determination of fouling-related critical flux in self-forming dynamic membrane bioreactors: Interference of membrane compressibility. J Membr Sci 390: 113-120
61. Yu ZX, Chu HQ, Cao DW et al. (2012) Pilot-scale hybrid bio-diatomite/dynamic membrane reactor for slightly polluted raw water purification. Desalination 285: 73-82
62. Verrecht B, Maere T, Nopens I et al. (2010) The cost of a large-scale hollow fibre mbr. Water Res 44: 5274-5283
63. Li WW, Wang YK, Sheng GP et al. (2012) Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment. Bioresour Technol
64. Le-Clech P (2010) Membrane bioreactors and their uses in wastewater treatments. Appl Microbiol Biotechnol 88: 1253-1260
65. Ersahin ME, Ozgun H, Dereli RK, et al. (2012) A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresour Technol 122: 196-206
66. Fenu A, Roels J, Wambecq T et al. (2010) Energy audit of a full scale mbr system. Desalination 262: 121-128
67.Verrecht B, Judd S, Guglielmi G et al. (2008) An aeration energy model for an immersed membrane bioreactor. Water Res 42: 4761-4770