Supporting information

Title:

Study of Noncovalent Interactions of Sulfur-Doped Carbon Nanotubes Using DFT, QTAIM, NBO and NCI Calculations

Authors:

Kayvan Saadat, Hossein Tavakol*

Address:

Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Tell: +98-31-33913241; Fax: +98-31-33912350; Email: .

Table S1. Optimized parameters of all complexes

SA2 / SA1 / A2 / A1
Ab(°) / Da(Å) / Ab(°) / Da(Å) / Ab(°) / Da(Å) / Ab(°) / Da(Å)
114.3 / 2.5 / 119.6 / 2.9 / 95.0 / 2.857 / 94.2 / 2.919 / CH3OH
161.8 / 2.9 / 126.0 / 2.8 / 104.4 / 2.903 / 140.8 / 2.876 / CH3SH
102.6 / 2.6 / 115.4 / 3.0 / 115.8 / 2.771 / 119.5 / 2.726 / H2O
113.4 / 3.0 / 106.7 / 3.0 / 125.6 / 3.631 / 135.6 / 2.835 / H2S
S2A3 / S2A2 / S2A1
Ab(°) / Da(Å) / Ab(°) / Adsorbate / Ab(°) / Da(Å)
113.2 / 2.496 / 111.0 / 2.536 / 118.9 / 2.443 / CH3OH
167.6 / 2.907 / 159.6 / 2.882 / 132.7 / 2.760 / CH3SH
113.1 / 2.519 / 102.9 / 2.648 / 124.8 / 2.424 / H2O
154.2 / 2.685 / 118.8 / 2.920 / 111.2 / 2.971 / H2S

Table S2. Important NBO atomic charges of CNT and monosulfur-doped SCNT with small molecules

Charge / C / X / H(X) / S/C (CNT)a
A1-CH3OH / -0.365 / -0.759 / 0.478 / -0.009
A1-CH3SH / -0.830 / -0.102 / 0.152 / 0.008
A1-H2O / - / -0.952 / 0.478 / -0.024
A1-H2S / - / -0.340 / 0.169 / -0.020
A2-CH3OH / -0.362 / -0.760 / 0.478 / -0.005
A2-CH3SH / -0.830 / -0.102 / 0.150 / 0.003
A2-H2O / - / -0.954 / 0.479 / -0.018
A2-H2S / - / -0.347 / 0.172 / -0.006
SA1-CH3OH / -0.366 / -0.774 / 0.487 / 0.896
SA1-CH3SH / -0.827 / -0.114 / 0.161 / 0.873
SA1-H2O / - / -0.964 / 0.490 / 0.897
SA1-H2S / - / -0.349 / 0.178 / 0.870
SA2-CH3OH / -0.367 / -0.767 / 0.484 / 0.916
SA2-CH3SH / -0.827 / -0.116 / 0.159 / 0.887
SA2-H2O / - / -0.962 / 0.486 / 0.904
SA2-H2S / - / -0.356 / 0.178 / 0.892

a Atomic charge of Carbon in CNT which have strongest interaction with adsorbates (pristine CNT mode)

Table S3. Important NBO atomic charges of disulfur-doped SCNT with small molecules

Complex / C / X / H(X) / S1 / S2
S2A1-CH3OH / -0.365 / -0.773 / 0.487 / 0.891 / 0.921
S2A1-CH3SH / -0.827 / -0.114 / 0.161 / 0.869 / 0.893
S2A1-H2O / - / -0.963 / 0.489 / 0.892 / 0.915
S2A1-H2S / - / -0.349 / 0.177 / 0.862 / 0.898
S2A2-CH3OH / -0.367 / -0.766 / 0.483 / 0.910 / 0.915
S2A2-CH3SH / -0.827 / -0.115 / 0.159 / 0.882 / 0.882
S2A2-H2O / - / -0.960 / 0.485 / 0.891 / 0.888
S2A2-H2S / - / -0.353 / 0.177 / 0.882 / 0.882
S2A3-CH3OH / -0.363 / -0.762 / 0.482 / 0.920 / 0.916
S2A3-CH3SH / -0.827 / -0.117 / 0.159 / 0.890 / 0.892
S2A3-H2O / - / -0.961 / 0.487 / 0.901 / 0.912
S2A3-H2S / - / -0.385 / 0.179 / 0.902 / 0.881

Figure S1. BCPs (green dots) and RCPs (red dots) of noncovalent interaction of pristine and SCNTs with small molecules

Figure S2. BCPs (green dots) and RCPs (red dots) of noncovalent interaction of S2CNTs with small molecules

Figure S3. Noncovalent interaction isosurfaces obtained from RDG and electron density frames for interactions of CNTs and small molecules

Figure S4. Noncovalent interaction isosurfaces obtained from RDG and electron density frames for interactions of SCNTs and small molecules

Figure S5. Noncovalent interaction isosurfaces obtained from RDG and electron density frames for interactions of S2CNTs and small molecules

Figure S6. Plots of sign λ2×ρ versus RDG for noncovalent interaction complexes