Press RELEASE
July 26, 2013 || Page 1 | 3
Press RELEASE
Press RELEASE
July 26, 2013 || Page 1 | 3
LIFTSYS prototype machine for transferring biomaterials
At the FraunhoferInstitute for Laser Technology ILT, an interdisciplinary team of researchers is working ona method for transferring biomaterials and on innovativesystems technology. Now the scientists in Aachen have managed to manufacturea machine for medical and pharmaceutical research based on thelaser-induced forward transfer (LIFT) method. The system is to be used mainly for theselective transferof hydrogels, living cells, and other biomaterials.The first prototype machine, known as LIFTSYS, was recently delivered to the Swiss Federal Institute of Technologyin Lausanne EPFL.
The LIFT method can be used whenever tiny amounts of material need to be applied onto receiver substrates with pinpoint precision. One broad field of application for the technology is medical and pharmaceutical research, for instance, where diseases andactive pharmaceutical ingredients are studied in specially made test structures. Here it is imperative to apply the precious material selectively and as sparingly as possible onto a receiver substrate.The LIFT method facilitates the transfer of abroad range of materials, such as glycoproteins, living cells, and metals – with high precision and using up a minimum of resources.The Biofabrication Group at Fraunhofer ILT is currently working on further developing complex cell-basedin vitro test systems.
Transferring material withouta printer head: cost-effective and reliable
This is how the printing process works: the receiver substrate is situated beneath a glass slide bearing the biomaterial to be transferred on its underside and an intermediate titanium absorber layer.A pulsed laser beam evaporates the titanium layer, and the resulting forwards impulse transfers the biomaterial onto the receiver substrate. This laser-based process has no need of a printer head and so it can transfer biomaterialssuch as RNA, DNA, proteins, and cellsregardless of their viscosity.The absence of a printer head also means there is none of the associated sample wastage caused, for example, by feeder lines. This dramatically reduces the amount of material required to carry out an analysis. What is more, the LIFT method can produce spot sizes of 10 µm to 300 µm – which means up to 500,000 protein spots can fit onto a surface the size of a thumbnail. Until now it has not been possible to build up sample material with such precision and efficiency and in such small amounts.
From laboratory setups to a user-friendly machine
Fraunhofer ILT’s system development resulted in an innovative five-axis machine with motion systems for transfer and receiver substrates. The built-in beam source can be set to the wavelengths 355 nm or 1064 nm, and the focal position, laser power, and number of pulsescan be automatically controlled.This enables the user to transfer a wide range of substances, from biomaterials to metals, with the LIFTSYS machine.
Researchers from the Process Control and System Technology Group in Aachen further developed the initial laboratory setups into the LIFTSYS machine. A main focus of their work was to ensure that the prototype was intuitive to operate. To this end, they integratedPC-basedvisualization and control technology into the system. There are two easy operating concepts for users to choose from: one is a graphical user interface, from which all elements of the system can be easily controlled; and the other is text-based programming in G-code. In addition to positioning commands, this text language also contains add-ons for laser processing: for example, laserpulses can be triggered individually and pulse energies changed. This makes it possible to program complex transfer patterns and assign them to a specific processing result.
Applications at EPFL in Lausanne
The Swiss Federal Institute of Technology in Lausanne EPFL is performing research in inkjet printing for various applications in micro-engineering, material science and bio-engineering. “The new LIFT method is a very interesting alternative to conventional nozzle-based inkjet printing, as new classes of materials can be locally deposited with low material waste,” explains Prof. JuergenBrugger of the EPFL. “The fact that even very high viscous liquids and solid films can be locally transferred to a receiver substrate makes the technique very versatile for several of our research groups.” The scientists at EPFL will first perform basic research to study the morphology and materials properties of the deposited pattern and will then benchmark the LIFT method with conventional inkjet printing. Subsequently, research for selected applications in the fields of semiconductors, biomaterials or sensors will be addressed. EPFL will also allow students to work on the new LIFT tool, preparing thus future engineers and scientists to be familiar with innovative surface patterning methods to enable novel manufacturing schemes and ultimately new applications.
LIFTSYS atBiotechnica 2013At this year’s Biotechnica –Europe’s no.1 event for biotechnology, life sciences, and lab technology, which will take place in Hannover, Germany, from October 8to 10, 2013 – Fraunhofer ILT will be presenting its LIFTSYS machinefor the application field ofin vitrotestsystems. At the joint Fraunhofer booth in Hall 9.E09, experts will be demonstrating a prototype machine along with other exhibits from the field of biofabrication.
/ Figure 1:LIFTSYS machine atFraunhofer ILT, used for selectively transferring biomaterials.
Source: Fraunhofer ILT, Aachen.
/ Fig. 2:
Transferring biomaterials to a microarray chipusing the LIFT method.
Source: Fraunhofer ILT, Aachen.
The Fraunhofer-Gesellschaftis the largest organization for applied research in Europe. Its research activities are conducted by 66 Fraunhofer Institutes at numerous locations throughout Germany. The Fraunhofer-Gesellschaft employs a staff of more than 22,000, who work with an annual research budget totaling 1.9 billion euros. Of this sum, 1.6 billion euros is generated through contract research. More than 70 percent of the Fraunhofer-Gesellschaft’s contract research revenue is derived from contracts with industry and from publicly financed research projects. Affiliated research centers and representative offices around the world provide contact with regions of greatest importance to present and future scientific progress and economic development.
For further information
Dr. Martin Wehner | Head ofthe Group Biotechnology and Laser Therapy | Phone +49 241 8906-202 | Fraunhofer-Institute for Laser Technology ILT, Aachen, Germany |
Dieses Feld, sowie die Tabelle auf der letzten Seite nicht löschen!